[ Objective] This study aimed to evaluate the uncertainty in detecting copper and zinc contents in maize flour by flame atomic absorption spectrometry. [ Method] Combined with the actual inspection experience, the unc...[ Objective] This study aimed to evaluate the uncertainty in detecting copper and zinc contents in maize flour by flame atomic absorption spectrometry. [ Method] Combined with the actual inspection experience, the uncertainty in detecting copper and zinc contents in maize flour by tame atomic absorption spec- trometry was evaluated to establish the mathematical model. The uncertainty sources in the experimental process were investigated to analyze several components af- fecting the uncertainty in sample detection, including sample weighing, standard material transfer, solution dilution and volume setting, curve fitting, and repeat- ability of measurement instruments. [ Result] Standard curve fitting and repeatability test were two major factors that significantly affected the combined standard uncertainty. However, in the actual detection process, standard curve calibration and repeated detection procedures should be controlled strictly. Finally, the ex- panded uncertainty of copper and zinc contents in maize flour was ( 1.38 ± 0.08) mg/kg and ( 10.20 ± 1.20) mg/kg, respectively. [ Conclusion] This study provided reference for improving the accuracy and reliability of the detection method.展开更多
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperatur...Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperature,plasma power,mode of plasma,and pulse time,on the deposition rate of copper thin film,the purity of the film and the step coverage were studied.The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied.The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy,respectively.The square resistance of the thin film was also tested by a four-probe technique.On the basis of on-line diagnosis,a growth mechanism of copper thin film was put forward,and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films.A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.展开更多
173 simultaneous determinations of serum copper levels (SCL), serum zinc levels (SZL) and copper/zinc ratio (CZR) were made by atomic absorption spectrophotometry in 51 previously untreated lymphoma patients. SCL and ...173 simultaneous determinations of serum copper levels (SCL), serum zinc levels (SZL) and copper/zinc ratio (CZR) were made by atomic absorption spectrophotometry in 51 previously untreated lymphoma patients. SCL and CZR were significantly higher in patients before treatment (mean value 22.97 μmol/L, 1.55, respectively) and in those who did not reach complete remission (mean 21.21 μmol/L, 1.36) as compared with the patients in complete remission (mean 16.36 μmol/L, 1.06) or normal controls (mean 15.67 μmol/L, 0.98). The mean value of SCL and CZR of patients in complete remission did not differ significantly from those of normal controls. Patients in stages HI and IV had higher SCL and CZR (mean 25.15 μmol/L, 1.79) than those in stage Ⅰ and Ⅱ (mean 19.30 μmol/L, 1.16). No significant difference in SZL was observed between the patient groups and normal controls. Thus, SCL and CZR may be used as prognostic indicators for monitoring disease activity and response to therapy in malignant lymphoma.展开更多
A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space veloc...A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.展开更多
Zinc-aluminum alloys have been used as bearing materials in the past. In recent years, binary Al-Zn alloys and Al-Zn-Cu alloys are being used as an alternative to the Zn-Al alloys for bearing applications. In this stu...Zinc-aluminum alloys have been used as bearing materials in the past. In recent years, binary Al-Zn alloys and Al-Zn-Cu alloys are being used as an alternative to the Zn-Al alloys for bearing applications. In this study, both binary Al-25 Zn and Al-3 Cu were prepared using stir casting process. Homogenization of the as-cast alloys was performed at 350oC for 8 h and then, the alloys were furnace-cooled to 50oC. The homogenization led to the removal of the dendritic structure of the as-cast alloys. After homogenization, wear parameters optimization was carried out using Taguchi technique. For this purpose, L9 orthogonal array was selected, and the control parameters selected are load, velocity, and sliding distance. The optimum parametric condition was obtained using signal-to-noise(S/N) ratio analysis, and specific wear rate(SWR) is the selected response. The "smaller-the-better" is the goal of the experiment for S/N ratio analysis. After the optimization, confirmation tests were carried out using analysis of variance(ANOVA) from the developed regression equation. Finally, wear mechanism studies were conducted using scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDX) images.展开更多
采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标...采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。展开更多
文摘[ Objective] This study aimed to evaluate the uncertainty in detecting copper and zinc contents in maize flour by flame atomic absorption spectrometry. [ Method] Combined with the actual inspection experience, the uncertainty in detecting copper and zinc contents in maize flour by tame atomic absorption spec- trometry was evaluated to establish the mathematical model. The uncertainty sources in the experimental process were investigated to analyze several components af- fecting the uncertainty in sample detection, including sample weighing, standard material transfer, solution dilution and volume setting, curve fitting, and repeat- ability of measurement instruments. [ Result] Standard curve fitting and repeatability test were two major factors that significantly affected the combined standard uncertainty. However, in the actual detection process, standard curve calibration and repeated detection procedures should be controlled strictly. Finally, the ex- panded uncertainty of copper and zinc contents in maize flour was ( 1.38 ± 0.08) mg/kg and ( 10.20 ± 1.20) mg/kg, respectively. [ Conclusion] This study provided reference for improving the accuracy and reliability of the detection method.
文摘Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature,using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas.The influence of temperature,plasma power,mode of plasma,and pulse time,on the deposition rate of copper thin film,the purity of the film and the step coverage were studied.The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied.The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy,respectively.The square resistance of the thin film was also tested by a four-probe technique.On the basis of on-line diagnosis,a growth mechanism of copper thin film was put forward,and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films.A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.
文摘173 simultaneous determinations of serum copper levels (SCL), serum zinc levels (SZL) and copper/zinc ratio (CZR) were made by atomic absorption spectrophotometry in 51 previously untreated lymphoma patients. SCL and CZR were significantly higher in patients before treatment (mean value 22.97 μmol/L, 1.55, respectively) and in those who did not reach complete remission (mean 21.21 μmol/L, 1.36) as compared with the patients in complete remission (mean 16.36 μmol/L, 1.06) or normal controls (mean 15.67 μmol/L, 0.98). The mean value of SCL and CZR of patients in complete remission did not differ significantly from those of normal controls. Patients in stages HI and IV had higher SCL and CZR (mean 25.15 μmol/L, 1.79) than those in stage Ⅰ and Ⅱ (mean 19.30 μmol/L, 1.16). No significant difference in SZL was observed between the patient groups and normal controls. Thus, SCL and CZR may be used as prognostic indicators for monitoring disease activity and response to therapy in malignant lymphoma.
文摘A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.
文摘Zinc-aluminum alloys have been used as bearing materials in the past. In recent years, binary Al-Zn alloys and Al-Zn-Cu alloys are being used as an alternative to the Zn-Al alloys for bearing applications. In this study, both binary Al-25 Zn and Al-3 Cu were prepared using stir casting process. Homogenization of the as-cast alloys was performed at 350oC for 8 h and then, the alloys were furnace-cooled to 50oC. The homogenization led to the removal of the dendritic structure of the as-cast alloys. After homogenization, wear parameters optimization was carried out using Taguchi technique. For this purpose, L9 orthogonal array was selected, and the control parameters selected are load, velocity, and sliding distance. The optimum parametric condition was obtained using signal-to-noise(S/N) ratio analysis, and specific wear rate(SWR) is the selected response. The "smaller-the-better" is the goal of the experiment for S/N ratio analysis. After the optimization, confirmation tests were carried out using analysis of variance(ANOVA) from the developed regression equation. Finally, wear mechanism studies were conducted using scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDX) images.
文摘采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。