The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam i...The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.展开更多
We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion...We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.展开更多
This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the...This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the strength of the pumping field. An equivalent incoherent pumping rate is introduced in this simplified theoretical model which exploits the dependence of this feature. The experimental observation is presented as evidence of the breaking point where the injected power is about 0.08 mW.展开更多
We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found th...We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.展开更多
We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a s...We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.展开更多
In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Ke...In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.展开更多
Localization of the three-level Λ-type atomic system interacting with two orthogonal standing-wave fields is proposed. Two equal and tunable peaks in the 2D plane are obtained by the detunings corresponding to the tw...Localization of the three-level Λ-type atomic system interacting with two orthogonal standing-wave fields is proposed. Two equal and tunable peaks in the 2D plane are obtained by the detunings corresponding to the two orthogonal standing-wave fields when the decreasing intensities of spontaneously generated coherence (SGC) arise in the three-level Λ-type atomic system, while one circular ring with shrinking radii in the 2D plane is obtained by the adjusted phases and wave vectors of the standing-wave fields when the increasing intensities of SGC occur in the three-level Λ-type atomic system. 2D atom localization with the single ring with shrinking radii realized by the multiple parametric manipulations demonstrated the flexibility for our scheme.展开更多
Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibiliti...Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.展开更多
We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap res...We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.展开更多
The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detun...The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detuning of external driving field on atomic spontaneous emission properties. For the larger detuning, the interesting phenomena of the spectral line narrowing are found which stem from the contribution of external driving field.展开更多
Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to t...Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to the absorption even for initial maximal mixed ground states. The absorption oscillates with a period depending on the two-photon detuning when the system is initially in a transparent state and the two-photon Raman detuning is suddenly changed. The amplitude of the absorption decays with the decay rate of the ground states, which is different from the case when the lasers are applied resonantly. These transient coherent oscillations can be used to measure the relaxation rate of the ground states.展开更多
We study the dynamics of the entropic uncertainty for three types of three-level atomic systems coupled to an environment modeled by random matrices. The results show that the entropic uncertainty in the Ξ-type atomi...We study the dynamics of the entropic uncertainty for three types of three-level atomic systems coupled to an environment modeled by random matrices. The results show that the entropic uncertainty in the Ξ-type atomic system is lower than that in the V-type atomic system which is exactly the same as that in the Λ-type atomic system. In addition, the effect of relative coupling strength on entropic uncertainty is opposite in Markov region and non-Markov region, and the influence of a common environment and independent environments in Markov region and non-Markov region is also opposite. One can reduce the entropic uncertainty by decreasing relative coupling strength or placing the system in two separate environments in the Markov case. In the non-Markov case, the entropic uncertainty can be reduced by increasing the relative coupling strength or by placing the system in a common environment.展开更多
We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separat...We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density.展开更多
In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of...In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.展开更多
We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) for N-level atomic system interacting with a coherent field in the presence of Kerr (linear and non-linea...We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) for N-level atomic system interacting with a coherent field in the presence of Kerr (linear and non-linear medium) and Stark effects. It is observed that the Stark and Kerr effects play a prominent role during the time evolution of the quantum system. The evolving quantum Fisher information (QFI) is noted as time grows under the non-linear Kerr medium contrary to the QE for higher dimensional systems. The effect of non-linear Kerr medium is greater on the QE as we increase the value of Kerr parameter. However, QFI and QE maintain their periodic nature under atomic motion. On the other hand, linear Kerr medium has no prominent effects on the dynamics of N-level atomic system. Furthermore, it has been observed that QFI and QE decay soon under the influence of Stark effect. In short, the N-level atomic system is found prone to the change of the Kerr medium and Stark effect for higher dimensional systems.展开更多
A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic f...A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.展开更多
The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of...The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton particle. In effect of the spin existence the electron motion in the hydrogen atom can be represented as a drift motion accomplished in a combined electric and magnetic field. More than 18,000 spin oscillations accompany one drift circulation performed along the lowest orbit of the Bohr atom. The semiclassical theory developed in the paper has been applied to calculate the doublet separation of the experimentally well-examined D line entering the spectrum of the sodium atom. This separation is found to be much similar to that obtained according to the relativistic old quantum theory.展开更多
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing...Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.11004126 and 61275212)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-1)
文摘The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60978013)the Shanghai Rising Star Project,China (Grant No. 11QA1407400)
文摘We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.60837004)the Key Project of Jiangxi Electric Power Company (Grant Nos.200950801 and 200950802)
文摘This paper investigates the breaking point between fast- and slow-light in a degenerate two-level atomic system, where fast-light can be converted to slow-light arbitrarily on a single transition line by adjusting the strength of the pumping field. An equivalent incoherent pumping rate is introduced in this simplified theoretical model which exploits the dependence of this feature. The experimental observation is presented as evidence of the breaking point where the injected power is about 0.08 mW.
基金the National Natural Science Foundation of China(Grant No.11205001)the National Basic Research Program of China(Grant No.2010CB234607)the Postdoctoral Science Foundation of Anhui University,China
文摘We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274112 and 11474092the Key Project of Shanghai Municipal Education Commission under Grant No 14ZZ056+1 种基金the Shanghai Natural Science Fund Project under Grant No14ZR1410300the Key Research Project of Henan Province Education Department under Grant No 13A140818
文摘We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.
文摘In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.
文摘Localization of the three-level Λ-type atomic system interacting with two orthogonal standing-wave fields is proposed. Two equal and tunable peaks in the 2D plane are obtained by the detunings corresponding to the two orthogonal standing-wave fields when the decreasing intensities of spontaneously generated coherence (SGC) arise in the three-level Λ-type atomic system, while one circular ring with shrinking radii in the 2D plane is obtained by the adjusted phases and wave vectors of the standing-wave fields when the increasing intensities of SGC occur in the three-level Λ-type atomic system. 2D atom localization with the single ring with shrinking radii realized by the multiple parametric manipulations demonstrated the flexibility for our scheme.
基金the National R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61875112,61705122,62075121,and 91736209)+1 种基金the Program for Sanjin Scholars of Shanxi Province,the Key Research and Development Program of Shanxi Province for International Cooperation(Grant No.201803D421034)Shanxi Scholarship Council of China(Grant Nos.2020-073),and 1331KSC.
文摘Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.
文摘We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904025,10674037 and 50836002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20092302120024)+3 种基金the China Postdoctoral Science Foundation (Grant No. 20090451007)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China (Grant No. HITQNJS. 2009. 030.)the National Basic Research Program of China (Grant No. 2007CB307001)the Program of Excellent Team in Harbin Institute of Technology China
文摘The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detuning of external driving field on atomic spontaneous emission properties. For the larger detuning, the interesting phenomena of the spectral line narrowing are found which stem from the contribution of external driving field.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences and the National Basic Research Program of China
文摘Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to the absorption even for initial maximal mixed ground states. The absorption oscillates with a period depending on the two-photon detuning when the system is initially in a transparent state and the two-photon Raman detuning is suddenly changed. The amplitude of the absorption decays with the decay rate of the ground states, which is different from the case when the lasers are applied resonantly. These transient coherent oscillations can be used to measure the relaxation rate of the ground states.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374096).
文摘We study the dynamics of the entropic uncertainty for three types of three-level atomic systems coupled to an environment modeled by random matrices. The results show that the entropic uncertainty in the Ξ-type atomic system is lower than that in the V-type atomic system which is exactly the same as that in the Λ-type atomic system. In addition, the effect of relative coupling strength on entropic uncertainty is opposite in Markov region and non-Markov region, and the influence of a common environment and independent environments in Markov region and non-Markov region is also opposite. One can reduce the entropic uncertainty by decreasing relative coupling strength or placing the system in two separate environments in the Markov case. In the non-Markov case, the entropic uncertainty can be reduced by increasing the relative coupling strength or by placing the system in a common environment.
基金Supported by the National Natural Science Foundation of China under Grant No 10974151, the New Century Excellent Talent Project (NCET) of the Ministry of Education of China under Grant No 08-0431, the Cross-Disciplinary Project of Xi'an Jiaotong University under Grant No 2009xjtujc08.
文摘We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.
文摘We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) for N-level atomic system interacting with a coherent field in the presence of Kerr (linear and non-linear medium) and Stark effects. It is observed that the Stark and Kerr effects play a prominent role during the time evolution of the quantum system. The evolving quantum Fisher information (QFI) is noted as time grows under the non-linear Kerr medium contrary to the QE for higher dimensional systems. The effect of non-linear Kerr medium is greater on the QE as we increase the value of Kerr parameter. However, QFI and QE maintain their periodic nature under atomic motion. On the other hand, linear Kerr medium has no prominent effects on the dynamics of N-level atomic system. Furthermore, it has been observed that QFI and QE decay soon under the influence of Stark effect. In short, the N-level atomic system is found prone to the change of the Kerr medium and Stark effect for higher dimensional systems.
文摘A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.
文摘The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton particle. In effect of the spin existence the electron motion in the hydrogen atom can be represented as a drift motion accomplished in a combined electric and magnetic field. More than 18,000 spin oscillations accompany one drift circulation performed along the lowest orbit of the Bohr atom. The semiclassical theory developed in the paper has been applied to calculate the doublet separation of the experimentally well-examined D line entering the spectrum of the sodium atom. This separation is found to be much similar to that obtained according to the relativistic old quantum theory.
基金This work was supported by the National Natural Science Foundation of China(62271299)Shanghai Sailing Program(22YF1413400).Shanghai Engineering Research Center for We thank the Integrated Circuits and Advanced Display Materials.
文摘Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.