The signs of the electric field markers in Figs.2 and 4 of the paper[Chin.Phys.B 32104211(2023)]have been corrected.These modifications do not affect the results derived in the paper.
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no...The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.展开更多
Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</s...Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.展开更多
Flattening filter-free(FFF) beams generated by medical linear particle accelerators(linacs) have recently been used in radiotherapy clinical practice.FFF beams have fundamental physical parameter differences with resp...Flattening filter-free(FFF) beams generated by medical linear particle accelerators(linacs) have recently been used in radiotherapy clinical practice.FFF beams have fundamental physical parameter differences with respect to standard flattening filter(FF) beams,such that the generally used dosimetric parameters and definitions are not always viable.This study investigates dosimetric parameters for use in the quality assurance of FFF beams generated by medical linacs in radiotherapy.The main characteristics of the photon beams are analyzed using specific data generated by a Varian True Beam linac having both FFF and FF beams of 6 and 10 MV(megavolt) energy,respectively.Definitions for dose profile parameters are suggested,starting from the renormalization of the FFF with respect to the corresponding FF beam.From this point,the flatness concept is translated into one of "un-flatness",and other definitions are proposed,maintaining a strict parallelism between FFF and FF parameter concepts.The quality controls used in establishing a quality assurance program when introducing FFF beams into the clinical environment are given,maintaining similarity to those used for standard FF beams,and recommendations for the introduction of FFF beams into clinical radiotherapy application for breast cancer patients are provided as an example for comparison between FFF and FF for dose distribution and coverage for a target volume.Although there are many advantages of using a FFF beam,especially for advanced radiotherapy techniques,there are a few limitations(e.g.,using a relatively higher energy photon beam for stereotactic radiotherapy(SRT),limited speed of current multileaf collimators(MLCs),and off-axis distance-dependent modulation in intensitymodulated radiation therapy(IMRT)) as well as challenges(e.g.,criteria for beam quality evaluation and penumbra,establishment of dosimetry methods,and consequences of photon target burn-up) that need to be addressed for establishing the FFF beam as a viable alternative to the FF beam.展开更多
In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (ya...In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (yarn crimp measured by an image analysis method) seems larger than actualvalue.From the explanation of this result,the variation of yarn configuration in woven fabric dueto the non-uniform flattening is revealed.The significance of this actual structure of woven fabricsis discussed.It is believed that the variation of yarn configuration is very important for fabric per-formance,and may be an advantage for fabric quality.展开更多
Atomic and close-to-atomic scale manufacturing(ACSM)aims to provide techniques for manufacturing in various fields,such as circuit manufacturing,high energy physics equipment,and medical devices and materials.The real...Atomic and close-to-atomic scale manufacturing(ACSM)aims to provide techniques for manufacturing in various fields,such as circuit manufacturing,high energy physics equipment,and medical devices and materials.The realization of atomic scale material manipulation depending on the theoretical system of classical mechanics faces great challenges.Understanding and using intermolecular and surface forces are the basis for better designing of ACSM.Transformation of atoms based on scanning tunneling microscopy or atomic force microscopy(AFM)is an essential process to regulate intermolecular interactions.Self-assemble process is a thermodynamic process involving complex intermolecular forces.The competition of these interaction determines structure assembly and packing geometry.For typical nanomachining processes including AFM nanomachining and chemical mechanical polishing,the coupling of chemistry and stress(tribochemistry)assists in the removal of surface atoms.Furthermore,based on the principle of triboelectrochemistry,we expect a further reduction of the potential barrier,and a potential application in high-efficiency atoms removal and fabricating functional coating.Future fundamental research is proposed for achieving high-efficiency and high-accuracy manufacturing with the aiding of external field.This review highlights the significant contribution of intermolecular and surface forces to ACSM,and may accelerate its progress in the in-depth investigation of fundamentals.展开更多
There is increasing interest in the clinical use of flattening filter-free(FFF) beams.In this study,we aimed to investigate the dosimetric characteristics of volumetric modulated arc radiotherapy(VMAT) with FFF beams ...There is increasing interest in the clinical use of flattening filter-free(FFF) beams.In this study,we aimed to investigate the dosimetric characteristics of volumetric modulated arc radiotherapy(VMAT) with FFF beams for nasopharyngeal carcinoma(NPC).Ten NPC patients were randomly selected to undergo a RapidArc plan with either FFF beams(RA-FFF) or conventional beams(RA-C).The doses to the planning target volumes(PTVs),organs at risk(OARs),and normal tissues were compared.The technical delivery parameters for RapidArc plans were also assessed to compare the characteristics of FFF and conventional beams.Both techniques delivered adequate doses to PTVs.For PTVs,RA-C delivered lower maximum and mean doses and improved conformity and homogeneity compared with RA-FFF.Both techniques provided similar maximum doses to the optic nerves and lenses.For the brain stem,spinal cord,larynx,parotid glands,oral cavity,and skin,RA-FFF showed significant dose increases compared to RA-C.The dose to normal tissue was lower in RA-FFF.The monitor units(MUs) were(536 ± 46) MU for RA-FFF and(501± 25) MU for RA-C.The treatment duration did not significantly differbetween plans.Although both treatment plans could meet clinical needs,RA-C is dosimetrically superior to RA-FFF for NPC radiotherapy.展开更多
Equatorial flattening of the core were previously estimated to be 5 × 10^-4 by using seismically derived density anomaly, and 1. 7748280× 10^-5 by assuming that the ratio of polar flattening to equatorial fl...Equatorial flattening of the core were previously estimated to be 5 × 10^-4 by using seismically derived density anomaly, and 1. 7748280× 10^-5 by assuming that the ratio of polar flattening to equatorial flattening of the core is the same as that of the whole Earth. In this study, we attempted to explain the difference by applying a density-contrast stripping process to the crust in the second method. We use the CRUST2. 0 model to estimate the inertia-moment contribution resulted from the density-contrast structure in the crust to a tri-axial Earth. The contribution of the density contrast in the crust was removed layer by layer. The layers include topography, bathymetry, ice, soft sediment, hard sediment, upper crust, middle crust, lower crust and the reference crust. For the boundaries of the topography and bathymetry layers, we used ETOPO5 values with a resolution of 5'. For boundaries of other layers, we used values from the CRUST2. 0 model with a resolution of 2~. After the contribution of density contrast is stripped, the equatorial flattening of the core was found to be 6. 544× 10 ^-5, which is still one order of magnitude smaller than the result given by the first method. This suggests that at least one of the methods is not correct. The influence of the uncertainty in the equatorial flattening of the core on the Free Core Nutation frequency is small, but its effect on the gravitational torque acting on the tri-axial inner core cannot be ignored. So an accurate determination of the equatorial flattening of the core is still necessary.展开更多
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b...In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.展开更多
Considering roll elastic flattening, new equations were proposed to calculate the average strain ε and average strain rate ε- in the hot strip rolling process. By comparing the proposed equations with currently used...Considering roll elastic flattening, new equations were proposed to calculate the average strain ε and average strain rate ε- in the hot strip rolling process. By comparing the proposed equations with currently used equations ,it was observed that the strain rate of thick strip and strain are not sensitive to roll elastic flattening. However,for thin strip, a noticeable calculated difference in the strain rate occurred when roll elastic flattening was considered.展开更多
Objective The aim of the study was to compare flattening filter-free(FFF) beams and conventional flattening filter(FF) beams in volumetric modulated arc therapy(VMAT) for cervical cancer after surgery, through a retro...Objective The aim of the study was to compare flattening filter-free(FFF) beams and conventional flattening filter(FF) beams in volumetric modulated arc therapy(VMAT) for cervical cancer after surgery, through a retrospective planning study.Methods VMAT plans of FFF beams and normal FF beams were designed for a cohort of 15 patients. The prescribed dose was 45 Gy to 1.8 Gy per fraction, and at least 95% of the planning target volume received this dose. Doses were computed with a commercially available treatment planning system using a Monte Carlo(MC) algorithm. Plans were compared according to dose-volume histogram analysis in terms of planning target volume homogeneity and conformity indices(HI and CI), as well as organs at risk(OAR) dose and volume parameters. Results FFF-VMAT was similar to FF-VMAT in terms of CI, but inferior to FF-VMAT considering HI. No statistically differences were observed between FFF-VMAT and FF-VMAT in following organ at risks including pelvic bone marrow, small bowel, bladder, rectum, and normal tissue(NT)..Conclusion For patients with cervical cancer after hysterectomy, the FFF beam achieved target and OAR dose distribution similar to that of the FF beam. Reduction of beam-on time in cervical cancer is beneficial.展开更多
<strong>Background:</strong><span><span><span style="font-family:""><span style="font-family:Verdana;"> Postoperative irradiation for brain tumor in pregnan...<strong>Background:</strong><span><span><span style="font-family:""><span style="font-family:Verdana;"> Postoperative irradiation for brain tumor in pregnant women is a matter of concern. </span><b><span style="font-family:Verdana;">Aim:</span></b><span style="font-family:Verdana;"> We aimed to assess the safety of radiotherapy for brain tumors in pregnancy. We here report a successful treatment for anaplastic astrocytoma during pregnancy: surgery + postoperative irradiation. We wish to emphasize how we devised irradiation procedure to achieve both therapeutic effectiveness and safety to the fetus/infant. </span><b><span style="font-family:Verdana;">Case Presentation: </span></b><span style="font-family:Verdana;">A 34-year-old pregnant woman suffered with brain anaplastic astrocytoma. Tumor resection under craniotomy was performed with success. We decided to conduct postoperative radiotherapy at 25 weeks of gestation to reduce the risk of recurrence. We used a flattening filter-free volumetric arc therapy (FFF-VMAT) technique, which can achieve lower out-of-field dose than VMAT with a flattening filter or helical tomotherapy. We prescribed 60 Gy over 30 fractions. During actual beam delivery, surface and rectal dose to the patient (mother) were measured. The total fetal dose was estimated at 0.006 - 0.018 Gy, which is under the threshold set by the ICRP. A male healthy infant was born vaginally at the 37th week of pregnancy. The patient (mother) and the infant are healthy at the time of writing.</span><b><span style="font-family:Verdana;"> Conclusion: </span></b><span style="font-family:Verdana;">FFF-VMAT is a good choice for brain tumors during pregnancy</span></span></span></span><span style="font-family:Verdana;">.</span>展开更多
The effect of rotation on the shape (figure) and gravitational quadrupole of astronomical bodies is calculated by using an approximate point core model: A point mass at the center of an ellipsoidal homogeneous fluid. ...The effect of rotation on the shape (figure) and gravitational quadrupole of astronomical bodies is calculated by using an approximate point core model: A point mass at the center of an ellipsoidal homogeneous fluid. Maclaurin’s analytical result for homogenous bodies generalizes to this model and leads to very accurate analytical results connecting the three observables: oblateness (ò), gravitational quadrupole (J2), and angular velocity parameter (q). The analytical results are compared to observational data for the planets and a good agreement is found. Oscillations near equilibrium are studied within the model.展开更多
Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy p...Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.展开更多
Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. A...Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.展开更多
A two-dimensional axisymmetric model,with 8700 and 7500 quadrilateral elements for the fluid and substrate zone separately,was developed to simulate the impacting and flattening process. The volume of fluid technique ...A two-dimensional axisymmetric model,with 8700 and 7500 quadrilateral elements for the fluid and substrate zone separately,was developed to simulate the impacting and flattening process. The volume of fluid technique was employed to track the interface between the air and droplet. The relationships between the droplet pre-impact parameters and the flattening time as well as the flattening ratio were investigated by altering one of the parameters while remaining the others unchanged. The results show that the droplet height reaches its minimum value at approximately half of the spreading time,which also indicates the finish of vertical fluid flow at that time. The flattening ratio increases with the increase of the three pre-impact parameters-droplet diameter,temperature and velocity,even though the flattening time decreases when the droplet velocity increase.展开更多
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manu...With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.展开更多
文摘The signs of the electric field markers in Figs.2 and 4 of the paper[Chin.Phys.B 32104211(2023)]have been corrected.These modifications do not affect the results derived in the paper.
基金supported by National Natural Science Foundation of China(Grant Nos. 50975096, 51175186)Guangdong Provincial Natural Science Foundation of China(Grant No. S2011010002225)+1 种基金Guangdong Provincial Science and Technology Planning Project of China(GrantNos. 2010A080802009, 2010A011300022, 2011B040300020)Fundamental Research Funds for the Central Universities of China(GrantNo.2012ZZ0053)
文摘The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
文摘Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.
文摘Flattening filter-free(FFF) beams generated by medical linear particle accelerators(linacs) have recently been used in radiotherapy clinical practice.FFF beams have fundamental physical parameter differences with respect to standard flattening filter(FF) beams,such that the generally used dosimetric parameters and definitions are not always viable.This study investigates dosimetric parameters for use in the quality assurance of FFF beams generated by medical linacs in radiotherapy.The main characteristics of the photon beams are analyzed using specific data generated by a Varian True Beam linac having both FFF and FF beams of 6 and 10 MV(megavolt) energy,respectively.Definitions for dose profile parameters are suggested,starting from the renormalization of the FFF with respect to the corresponding FF beam.From this point,the flatness concept is translated into one of "un-flatness",and other definitions are proposed,maintaining a strict parallelism between FFF and FF parameter concepts.The quality controls used in establishing a quality assurance program when introducing FFF beams into the clinical environment are given,maintaining similarity to those used for standard FF beams,and recommendations for the introduction of FFF beams into clinical radiotherapy application for breast cancer patients are provided as an example for comparison between FFF and FF for dose distribution and coverage for a target volume.Although there are many advantages of using a FFF beam,especially for advanced radiotherapy techniques,there are a few limitations(e.g.,using a relatively higher energy photon beam for stereotactic radiotherapy(SRT),limited speed of current multileaf collimators(MLCs),and off-axis distance-dependent modulation in intensitymodulated radiation therapy(IMRT)) as well as challenges(e.g.,criteria for beam quality evaluation and penumbra,establishment of dosimetry methods,and consequences of photon target burn-up) that need to be addressed for establishing the FFF beam as a viable alternative to the FF beam.
文摘In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (yarn crimp measured by an image analysis method) seems larger than actualvalue.From the explanation of this result,the variation of yarn configuration in woven fabric dueto the non-uniform flattening is revealed.The significance of this actual structure of woven fabricsis discussed.It is believed that the variation of yarn configuration is very important for fabric per-formance,and may be an advantage for fabric quality.
基金funded by the National Natural Science Foundation of China with Grant No.51425502.
文摘Atomic and close-to-atomic scale manufacturing(ACSM)aims to provide techniques for manufacturing in various fields,such as circuit manufacturing,high energy physics equipment,and medical devices and materials.The realization of atomic scale material manipulation depending on the theoretical system of classical mechanics faces great challenges.Understanding and using intermolecular and surface forces are the basis for better designing of ACSM.Transformation of atoms based on scanning tunneling microscopy or atomic force microscopy(AFM)is an essential process to regulate intermolecular interactions.Self-assemble process is a thermodynamic process involving complex intermolecular forces.The competition of these interaction determines structure assembly and packing geometry.For typical nanomachining processes including AFM nanomachining and chemical mechanical polishing,the coupling of chemistry and stress(tribochemistry)assists in the removal of surface atoms.Furthermore,based on the principle of triboelectrochemistry,we expect a further reduction of the potential barrier,and a potential application in high-efficiency atoms removal and fabricating functional coating.Future fundamental research is proposed for achieving high-efficiency and high-accuracy manufacturing with the aiding of external field.This review highlights the significant contribution of intermolecular and surface forces to ACSM,and may accelerate its progress in the in-depth investigation of fundamentals.
文摘There is increasing interest in the clinical use of flattening filter-free(FFF) beams.In this study,we aimed to investigate the dosimetric characteristics of volumetric modulated arc radiotherapy(VMAT) with FFF beams for nasopharyngeal carcinoma(NPC).Ten NPC patients were randomly selected to undergo a RapidArc plan with either FFF beams(RA-FFF) or conventional beams(RA-C).The doses to the planning target volumes(PTVs),organs at risk(OARs),and normal tissues were compared.The technical delivery parameters for RapidArc plans were also assessed to compare the characteristics of FFF and conventional beams.Both techniques delivered adequate doses to PTVs.For PTVs,RA-C delivered lower maximum and mean doses and improved conformity and homogeneity compared with RA-FFF.Both techniques provided similar maximum doses to the optic nerves and lenses.For the brain stem,spinal cord,larynx,parotid glands,oral cavity,and skin,RA-FFF showed significant dose increases compared to RA-C.The dose to normal tissue was lower in RA-FFF.The monitor units(MUs) were(536 ± 46) MU for RA-FFF and(501± 25) MU for RA-C.The treatment duration did not significantly differbetween plans.Although both treatment plans could meet clinical needs,RA-C is dosimetrically superior to RA-FFF for NPC radiotherapy.
基金supported by National 973 Project of China(2013CB733305)NSFC(41174011+5 种基金410210614112800341210006)Open Research Fund Program of the Key Laboratory of Geospace Environment and GeodesyMinistry of EducationChina(110206)
文摘Equatorial flattening of the core were previously estimated to be 5 × 10^-4 by using seismically derived density anomaly, and 1. 7748280× 10^-5 by assuming that the ratio of polar flattening to equatorial flattening of the core is the same as that of the whole Earth. In this study, we attempted to explain the difference by applying a density-contrast stripping process to the crust in the second method. We use the CRUST2. 0 model to estimate the inertia-moment contribution resulted from the density-contrast structure in the crust to a tri-axial Earth. The contribution of the density contrast in the crust was removed layer by layer. The layers include topography, bathymetry, ice, soft sediment, hard sediment, upper crust, middle crust, lower crust and the reference crust. For the boundaries of the topography and bathymetry layers, we used ETOPO5 values with a resolution of 5'. For boundaries of other layers, we used values from the CRUST2. 0 model with a resolution of 2~. After the contribution of density contrast is stripped, the equatorial flattening of the core was found to be 6. 544× 10 ^-5, which is still one order of magnitude smaller than the result given by the first method. This suggests that at least one of the methods is not correct. The influence of the uncertainty in the equatorial flattening of the core on the Free Core Nutation frequency is small, but its effect on the gravitational torque acting on the tri-axial inner core cannot be ignored. So an accurate determination of the equatorial flattening of the core is still necessary.
基金Supported by the National Natural Science Foundation of China(50805009)Twelve Five-Year Plan Basic Research Item of National Defense of China(A2220110008)
文摘In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.
文摘Considering roll elastic flattening, new equations were proposed to calculate the average strain ε and average strain rate ε- in the hot strip rolling process. By comparing the proposed equations with currently used equations ,it was observed that the strain rate of thick strip and strain are not sensitive to roll elastic flattening. However,for thin strip, a noticeable calculated difference in the strain rate occurred when roll elastic flattening was considered.
基金Supported by a grant of the Military Medical Metrology Project(No.2011-JL2-005)
文摘Objective The aim of the study was to compare flattening filter-free(FFF) beams and conventional flattening filter(FF) beams in volumetric modulated arc therapy(VMAT) for cervical cancer after surgery, through a retrospective planning study.Methods VMAT plans of FFF beams and normal FF beams were designed for a cohort of 15 patients. The prescribed dose was 45 Gy to 1.8 Gy per fraction, and at least 95% of the planning target volume received this dose. Doses were computed with a commercially available treatment planning system using a Monte Carlo(MC) algorithm. Plans were compared according to dose-volume histogram analysis in terms of planning target volume homogeneity and conformity indices(HI and CI), as well as organs at risk(OAR) dose and volume parameters. Results FFF-VMAT was similar to FF-VMAT in terms of CI, but inferior to FF-VMAT considering HI. No statistically differences were observed between FFF-VMAT and FF-VMAT in following organ at risks including pelvic bone marrow, small bowel, bladder, rectum, and normal tissue(NT)..Conclusion For patients with cervical cancer after hysterectomy, the FFF beam achieved target and OAR dose distribution similar to that of the FF beam. Reduction of beam-on time in cervical cancer is beneficial.
文摘<strong>Background:</strong><span><span><span style="font-family:""><span style="font-family:Verdana;"> Postoperative irradiation for brain tumor in pregnant women is a matter of concern. </span><b><span style="font-family:Verdana;">Aim:</span></b><span style="font-family:Verdana;"> We aimed to assess the safety of radiotherapy for brain tumors in pregnancy. We here report a successful treatment for anaplastic astrocytoma during pregnancy: surgery + postoperative irradiation. We wish to emphasize how we devised irradiation procedure to achieve both therapeutic effectiveness and safety to the fetus/infant. </span><b><span style="font-family:Verdana;">Case Presentation: </span></b><span style="font-family:Verdana;">A 34-year-old pregnant woman suffered with brain anaplastic astrocytoma. Tumor resection under craniotomy was performed with success. We decided to conduct postoperative radiotherapy at 25 weeks of gestation to reduce the risk of recurrence. We used a flattening filter-free volumetric arc therapy (FFF-VMAT) technique, which can achieve lower out-of-field dose than VMAT with a flattening filter or helical tomotherapy. We prescribed 60 Gy over 30 fractions. During actual beam delivery, surface and rectal dose to the patient (mother) were measured. The total fetal dose was estimated at 0.006 - 0.018 Gy, which is under the threshold set by the ICRP. A male healthy infant was born vaginally at the 37th week of pregnancy. The patient (mother) and the infant are healthy at the time of writing.</span><b><span style="font-family:Verdana;"> Conclusion: </span></b><span style="font-family:Verdana;">FFF-VMAT is a good choice for brain tumors during pregnancy</span></span></span></span><span style="font-family:Verdana;">.</span>
文摘The effect of rotation on the shape (figure) and gravitational quadrupole of astronomical bodies is calculated by using an approximate point core model: A point mass at the center of an ellipsoidal homogeneous fluid. Maclaurin’s analytical result for homogenous bodies generalizes to this model and leads to very accurate analytical results connecting the three observables: oblateness (ò), gravitational quadrupole (J2), and angular velocity parameter (q). The analytical results are compared to observational data for the planets and a good agreement is found. Oscillations near equilibrium are studied within the model.
文摘Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.
基金Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594)the Science and Technology Project of Guangdong Province of China (Grant No. 2020B010190001)+1 种基金the National Key R&D Program of China (Grant No. 2018YFA0306200)the National Natural Science Foundation of China (Grant No. 11974119)。
文摘Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.
基金Project (50675072) supported by the National Natural Science Foundation of ChinaProject (E0610018) supported by the Natural Science Foundation of Fujian Province, ChinaProject (20062178) supported by the Natural Science Foundation of Liaoning Province, China
文摘A two-dimensional axisymmetric model,with 8700 and 7500 quadrilateral elements for the fluid and substrate zone separately,was developed to simulate the impacting and flattening process. The volume of fluid technique was employed to track the interface between the air and droplet. The relationships between the droplet pre-impact parameters and the flattening time as well as the flattening ratio were investigated by altering one of the parameters while remaining the others unchanged. The results show that the droplet height reaches its minimum value at approximately half of the spreading time,which also indicates the finish of vertical fluid flow at that time. The flattening ratio increases with the increase of the three pre-impact parameters-droplet diameter,temperature and velocity,even though the flattening time decreases when the droplet velocity increase.
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
基金Project(50905119)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(PEMT1206)supported by the Open Foundation of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology,ChinaProject(S2012040007715)supported by Natural Science Foundation of Guangdong Province,China
文摘With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.