Objective:To investigate whether atractylenolide Ⅰ(ATL-Ⅰ) has protective effect on lipopolysaccharide(LPS)-induced disseminated intravascular coagulation(DIC) in vivo and in vitro,and explore whether NF-κB signalin...Objective:To investigate whether atractylenolide Ⅰ(ATL-Ⅰ) has protective effect on lipopolysaccharide(LPS)-induced disseminated intravascular coagulation(DIC) in vivo and in vitro,and explore whether NF-κB signaling pathway is involved in ATL-Ⅰ treatment.Methods:New Zealand white rabbits were injected with LPS through marginal ear vein over a period of 6h at a rate of 600 μg/kg(10 mL/h).Similarly,in the treatment groups,1.0,2.0,or 5.0 mg/kg ATL-Ⅰ were given.Both survival rate and organ function were tested,including the level of alanine aminotransferase(ALT),blood urine nitrogen(BUN),and TNF-α were examined by ELISA.Also haemostatic and fibrinolytic parameters in serum were measured.RAW 264.7 macrophage cells were administered with control,LPS,LPS + ATL-Ⅰ and ATL-Ⅰ alone,and TNF-α,phosphorylation(P)-IκBα,phosphorylation(P)-NF-κB(P65) and NF-κB(P65) were determined by Western blot.Results:The administration of LPS resulted in 73.3%mortality rate,and the increase of serum TNF-α,BUN and ALT levels.When ATL-Ⅰ treatment significantly increased the survival rate of LPS-induced DIC model,also improved the function of blood coagulation.And protein analysis indicated that ATL-Ⅰ remarkably protected liver and renal as decreasing TNF-α expression.In vitro,ATL-Ⅰ obviously decreased LPS-induced TNF-αproduction and the expression of P-NF-κB(P65),with the decrease of P-IκBα.Conclusions:ATL-Ⅰ has protective effect on LPS-induced DIC,which can elevate the survival rate,reduce organ damage,improve the function of blood coagulation and suppress TNF-α expression by inhibiting the activation of NF-κB signaling pathway.展开更多
文摘工程结构在制造工艺过程中或使用期间会产生裂纹,对结构断裂路径的预测和研究是防治工程安全问题发生的重要手段。在考虑裂纹尖端应力场常数项T应力的基础上对传统的最大周向应力准则(Maximum tangential stress criterion,MTS)和最小应变能密度因子准则(Minimum strain energy density criterion,SED)进行修正,采用Python语言对ABAQUS的前、后处理和有限元计算模块进行二次开发,通过计算最优解的粒子群算法(Particle swarm optimization,PSO)将修正后的准则编入裂纹自动扩展程序脚本中。利用上述二次开发程序对初始纯Ⅰ型裂纹的扩展路径进行模拟,结果表明:采用ABAQUS脚本程序模拟结果与相关文献实验结果吻合,表明了程序的有效性,进而实现考虑T应力的多种断裂准则对裂纹扩展路径的预测;当T应力值处于一定范围内时,修正的MTS准则无法预测裂纹发生的偏转现象,扩展路径呈直线,此时可采用修正的SED准则进行预测。
基金funded by grants from the Science and Technology Planning Project of Guangdong Province(2014A020211022)Science and Technology Planning Project of Guangzhou Province(201510010074)
文摘Objective:To investigate whether atractylenolide Ⅰ(ATL-Ⅰ) has protective effect on lipopolysaccharide(LPS)-induced disseminated intravascular coagulation(DIC) in vivo and in vitro,and explore whether NF-κB signaling pathway is involved in ATL-Ⅰ treatment.Methods:New Zealand white rabbits were injected with LPS through marginal ear vein over a period of 6h at a rate of 600 μg/kg(10 mL/h).Similarly,in the treatment groups,1.0,2.0,or 5.0 mg/kg ATL-Ⅰ were given.Both survival rate and organ function were tested,including the level of alanine aminotransferase(ALT),blood urine nitrogen(BUN),and TNF-α were examined by ELISA.Also haemostatic and fibrinolytic parameters in serum were measured.RAW 264.7 macrophage cells were administered with control,LPS,LPS + ATL-Ⅰ and ATL-Ⅰ alone,and TNF-α,phosphorylation(P)-IκBα,phosphorylation(P)-NF-κB(P65) and NF-κB(P65) were determined by Western blot.Results:The administration of LPS resulted in 73.3%mortality rate,and the increase of serum TNF-α,BUN and ALT levels.When ATL-Ⅰ treatment significantly increased the survival rate of LPS-induced DIC model,also improved the function of blood coagulation.And protein analysis indicated that ATL-Ⅰ remarkably protected liver and renal as decreasing TNF-α expression.In vitro,ATL-Ⅰ obviously decreased LPS-induced TNF-αproduction and the expression of P-NF-κB(P65),with the decrease of P-IκBα.Conclusions:ATL-Ⅰ has protective effect on LPS-induced DIC,which can elevate the survival rate,reduce organ damage,improve the function of blood coagulation and suppress TNF-α expression by inhibiting the activation of NF-κB signaling pathway.