期刊文献+
共找到1,318篇文章
< 1 2 66 >
每页显示 20 50 100
Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks:A Distributed MPC Framework 被引量:1
1
作者 Henglai Wei Hui Zhang +1 位作者 Kamal AI-Haddad Yang Shi 《Engineering》 SCIE EI CAS CSCD 2024年第2期35-46,共12页
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram... This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings. 展开更多
关键词 Model predictive control Resilient control Platoon control Intelligent and connected vehicle byzantine attacks
下载PDF
Adaptive Update Distribution Estimation under Probability Byzantine Attack
2
作者 Gang Long Zhaoxin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1667-1685,共19页
The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa... The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments. 展开更多
关键词 Distribution estimation network security least-mean-square binomial distribution probability byzantine attack
下载PDF
Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing
3
作者 Zhang Cui Xu Xiao +4 位作者 Wu Qiong Fan Pingyi Fan Qiang Zhu Huiling Wang Jiangzhou 《China Communications》 SCIE CSCD 2024年第8期1-17,共17页
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount... In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model. 展开更多
关键词 asynchronous federated learning byzantine attacks vehicle selection vehicular edge computing
下载PDF
Molecule aging induced by electron attacking
4
作者 Ping Song Yining Dong +5 位作者 Xue Gong Mingbo Ruan Baoxin Ni Xuanhao Mei Kun Jiang Weilin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期519-525,I0013,共8页
Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"... Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"or loss of unknown tiny particles does not change apparently its molecular structure or chemical composition,but some physicochemical properties could be changed irreversibly.We further confirm such"molecule aging"via a long-term electron attacking to age water(H_(2)O)molecules.The IR spectra show no structural difference between the fresh water and the aged one,while the NMR spectra show that the electron attacking can decrease the size of water clusters.Such facts indicate that the electron attacking indeed can"affect"the structure of water molecule slightly but without damaging to its basic molecule frame.Further exploration reveals that the hydrogen evolution reaction(HER)activity of the aged water molecule is lower than the fresh water on the same Pt/C electrocatalyst.The density functional theory calculations indicate that the shortened O-H bond in H_(2)O indeed can present lower HER activity,so the observed size decrease of water clusters from NMR probably could be attributed to the shortening of O-H bond in water molecules.Such results indicate significantly that the molecule aging can produce materials with new functions for new possible applications. 展开更多
关键词 Aging of molecules Electron attacking Full width at half maxima Hydrogen evolution reaction
下载PDF
Distributed Platooning Control of Automated Vehicles Subject to Replay Attacks Based on Proportional Integral Observers 被引量:1
5
作者 Meiling Xie Derui Ding +3 位作者 Xiaohua Ge Qing-Long Han Hongli Dong Yan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1954-1966,共13页
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu... Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Automated vehicles platooning control proportional-integral-observers(PIOs) replay attacks TIME-DELAYS
下载PDF
Detection and defending the XSS attack using novel hybrid stacking ensemble learning-based DNN approach 被引量:1
6
作者 Muralitharan Krishnan Yongdo Lim +1 位作者 Seethalakshmi Perumal Gayathri Palanisamy 《Digital Communications and Networks》 SCIE CSCD 2024年第3期716-727,共12页
Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod... Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment. 展开更多
关键词 Machine learning Deep neural networks Classification Stacking ensemble XSS attack URL encoding JScript/JavaScript Web security
下载PDF
Certrust:An SDN-Based Framework for the Trust of Certificates against Crossfire Attacks in IoT Scenarios
7
作者 Lei Yan Maode Ma +3 位作者 Dandan Li Xiaohong Huang Yan Ma Kun Xie 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2137-2162,共26页
The low-intensity attack flows used by Crossfire attacks are hard to distinguish from legitimate flows.Traditional methods to identify the malicious flows in Crossfire attacks are rerouting,which is based on statistic... The low-intensity attack flows used by Crossfire attacks are hard to distinguish from legitimate flows.Traditional methods to identify the malicious flows in Crossfire attacks are rerouting,which is based on statistics.In these existing mechanisms,the identification of malicious flows depends on the IP address.However,the IP address is easy to be changed by attacks.Comparedwith the IP address,the certificate ismore challenging to be tampered with or forged.Moreover,the traffic trend in the network is towards encryption.The certificates are popularly utilized by IoT devices for authentication in encryption protocols.DTLShps proposed a new way to verify certificates for resource-constrained IoT devices by using the SDN controller.Based on DTLShps,the SDN controller can collect statistics on certificates.In this paper,we proposeCertrust,a framework based on the trust of certificates,tomitigate the Crossfire attack by using SDN for IoT.Our goal is threefold.First,the trust model is built based on the Bayesian trust system with the statistics on the participation of certificates in each Crossfire attack.Moreover,the forgetting curve is utilized instead of the traditional decay method in the Bayesian trust system for achieving a moderate decay rate.Second,for detecting the Crossfire attack accurately,a method based on graph connectivity is proposed.Third,several trust-based routing principles are proposed tomitigate the Crossfire attack.These principles can also encourage users to use certificates in communication.The performance evaluation shows that Certrust is more effective in mitigating the Crossfire attack than the traditional rerouting schemes.Moreover,our trust model has a more appropriate decay rate than the traditional methods. 展开更多
关键词 Trust model CERTIFICATE SDN Crossfire attack bayesian trust system forgetting curve IOT
下载PDF
An Efficient Character-Level Adversarial Attack Inspired by Textual Variations in Online Social Media Platforms
8
作者 Jebran Khan Kashif Ahmad Kyung-Ah Sohn 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2869-2894,共26页
In recent years,the growing popularity of social media platforms has led to several interesting natural language processing(NLP)applications.However,these social media-based NLP applications are subject to different t... In recent years,the growing popularity of social media platforms has led to several interesting natural language processing(NLP)applications.However,these social media-based NLP applications are subject to different types of adversarial attacks due to the vulnerabilities of machine learning(ML)and NLP techniques.This work presents a new low-level adversarial attack recipe inspired by textual variations in online social media communication.These variations are generated to convey the message using out-of-vocabulary words based on visual and phonetic similarities of characters and words in the shortest possible form.The intuition of the proposed scheme is to generate adversarial examples influenced by human cognition in text generation on social media platforms while preserving human robustness in text understanding with the fewest possible perturbations.The intentional textual variations introduced by users in online communication motivate us to replicate such trends in attacking text to see the effects of such widely used textual variations on the deep learning classifiers.In this work,the four most commonly used textual variations are chosen to generate adversarial examples.Moreover,this article introduced a word importance ranking-based beam search algorithm as a searching method for the best possible perturbation selection.The effectiveness of the proposed adversarial attacks has been demonstrated on four benchmark datasets in an extensive experimental setup. 展开更多
关键词 Adversarial attack text classification social media character-level attack phonetic similarity visual similarity word importance rank beam search
下载PDF
Transient ischemic attack induced by pulmonary arteriovenous fistula in a child:A case report
9
作者 Jun Zheng Qi-Yue Wu +1 位作者 Xia Zeng Du-Fei Zhang 《World Journal of Clinical Cases》 SCIE 2023年第9期2009-2014,共6页
BACKGROUND Cerebral ischemic stroke is attributed to paradoxical cerebral embolism.Pulmonary arteriovenous fistula(PAVF)is a rare potential cause of cerebral ischemic stroke,and cerebral ischemic stroke induced by PAV... BACKGROUND Cerebral ischemic stroke is attributed to paradoxical cerebral embolism.Pulmonary arteriovenous fistula(PAVF)is a rare potential cause of cerebral ischemic stroke,and cerebral ischemic stroke induced by PAVF in children is rare.CASE SUMMARY We report a case of right PAVF that presented as a transient ischemic attack(TIA)in a 13-year-old boy.The patient underwent embolization therapy and remained clinically stable for 2 years after treatment.CONCLUSION TIA induced by PAVF in children is rare,lacks typical clinical manifestations,and should not be ignored. 展开更多
关键词 Pulmonary arteriovenous fistula Transient ischemic attack Paradoxical cerebral embolism CHILDREN Case report
下载PDF
Phishing Attacks Detection Using EnsembleMachine Learning Algorithms
10
作者 Nisreen Innab Ahmed Abdelgader Fadol Osman +4 位作者 Mohammed Awad Mohammed Ataelfadiel Marwan Abu-Zanona Bassam Mohammad Elzaghmouri Farah H.Zawaideh Mouiad Fadeil Alawneh 《Computers, Materials & Continua》 SCIE EI 2024年第7期1325-1345,共21页
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ... Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate. 展开更多
关键词 Social engineering attackS phishing attacks machine learning SECURITY artificial intelligence
下载PDF
Countermeasure against blinding attack for single-photon detectors in quantum key distribution
11
作者 Lianjun Jiang Dongdong Li +12 位作者 Yuqiang Fang Meisheng Zhao Ming Liu Zhilin Xie Yukang Zhao Yanlin Tang Wei Jiang Houlin Fang Rui Ma Lei Cheng Weifeng Yang Songtao Han Shibiao Tang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期76-81,共6页
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin... Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security. 展开更多
关键词 quantum key distribution single photon detector blinding attack pulsed blinding attack COUNTERMEASURE quan-tum communication
下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
12
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
Novel cyber-physical collaborative detection and localization method against dynamic load altering attacks in smart energy grids
13
作者 Xinyu Wang Xiangjie Wang +2 位作者 Xiaoyuan Luo Xinping Guan Shuzheng Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期362-376,共15页
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a... Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs. 展开更多
关键词 Smart energy grids Cyber-physical system Dynamic load altering attacks attack prediction Detection and localization
下载PDF
Experimental Study of Local Scour Around Four Piles Under Different Attack Angles and Gap Ratios
14
作者 LIU Ming-ming TANG Guo-qiang +1 位作者 JIN Xin GENG Shao-yang 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期612-624,共13页
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o... In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures. 展开更多
关键词 local scour PILES gap ratio attack angle
下载PDF
ATSSC:An Attack Tolerant System in Serverless Computing
15
作者 Zhang Shuai Guo Yunfei +2 位作者 Hu Hongchao Liu Wenyan Wang Yawen 《China Communications》 SCIE CSCD 2024年第6期192-205,共14页
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ... Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs. 展开更多
关键词 active defense attack tolerant cloud computing SECURITY serverless computing
下载PDF
Mitigating while Accessing:A Lightweight Defense Framework Against Link Flooding Attacks in SDN
16
作者 Sun Hancun Chen Xu +1 位作者 Luo Yantian Ge Ning 《China Communications》 SCIE CSCD 2024年第11期15-27,共13页
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t... Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity. 展开更多
关键词 attack mitigation distributed denial of service(DDoS) link flooding attack(LFA) software defined networking(SDN)
下载PDF
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
17
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
Mitigating Blackhole and Greyhole Routing Attacks in Vehicular Ad Hoc Networks Using Blockchain Based Smart Contracts
18
作者 Abdulatif Alabdulatif Mada Alharbi +1 位作者 Abir Mchergui Tarek Moulahi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期2005-2021,共17页
The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced techno... The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks. 展开更多
关键词 Blockchain data privacy machine learning routing attacks smart contract VANET
下载PDF
K-core attack, equilibrium K-core,and kinetically constrained spin system
19
作者 周海军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期14-26,共13页
Kinetically constrained spin systems are toy models of supercooled liquids and amorphous solids. In this perspective,we revisit the prototypical Fredrickson–Andersen(FA) kinetically constrained model from the viewpoi... Kinetically constrained spin systems are toy models of supercooled liquids and amorphous solids. In this perspective,we revisit the prototypical Fredrickson–Andersen(FA) kinetically constrained model from the viewpoint of K-core combinatorial optimization. Each kinetic cluster of the FA system, containing all the mutually visitable microscopic occupation configurations, is exactly the solution space of a specific instance of the K-core attack problem. The whole set of different jammed occupation patterns of the FA system is the configuration space of an equilibrium K-core problem. Based on recent theoretical results achieved on the K-core attack and equilibrium K-core problems, we discuss the thermodynamic spin glass phase transitions and the maximum occupation density of the fully unfrozen FA kinetic cluster, and the minimum occupation density and extreme vulnerability of the partially frozen(jammed) kinetic clusters. The equivalence between K-core attack and the fully unfrozen FA kinetic cluster also implies a new way of sampling K-core attack solutions. 展开更多
关键词 Fredrickson–Andersen model K-core attack spin glass jamming
下载PDF
Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection
20
作者 Chengsheng Yuan Baojie Cui +2 位作者 Zhili Zhou Xinting Li Qingming Jonathan Wu 《Computers, Materials & Continua》 SCIE EI 2024年第1期899-914,共16页
In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint de... In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive. 展开更多
关键词 FLD adversarial attacks adversarial examples gradient optimization transferability
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部