Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of ...Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of flooding the victim network with an enormous number of packets, hence exhausting the resources and preventing the legitimate users to access them. After having standard DDoS defense mechanism, still attackers are able to launch an attack. These inadequate defense mechanisms need to be improved and integrated with other solutions. The purpose of this paper is to study the characteristics of DDoS attacks, various models involved in attacks and to provide a timeline of defense mechanism with their improvements to combat DDoS attacks. In addition to this, a novel scheme is proposed to detect DDoS attack efficiently by using MapReduce programming model.展开更多
Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to c...Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.展开更多
Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the ...Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.展开更多
Information Security is determined by three well know security parameters i.e. Confidentiality, Integrity and Availability. Availability is an important pillar when it comes to security of an information system. It is...Information Security is determined by three well know security parameters i.e. Confidentiality, Integrity and Availability. Availability is an important pillar when it comes to security of an information system. It is dependent upon the reliability, timeliness and accessibility of the Information System. This paper presents an analytical view of the fact that when Accessibility is degraded during the presence of an ongoing attack, the other factors reliability and timeliness can also get affected, therefore creating a degrading impact on the overall Availability of the system, which eventually leads to the Denial of Service Attack and therefore affecting the security of the System.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the rob...The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
In this paper,denial of service(DoS)attack management for destroying the collaborative estimation in sensor networks and minimizing attack energy from the attacker perspective is studied.In the communication channels ...In this paper,denial of service(DoS)attack management for destroying the collaborative estimation in sensor networks and minimizing attack energy from the attacker perspective is studied.In the communication channels between sensors and a remote estimator,the attacker chooses some channels to randomly jam DoS attacks to make their packets randomly dropped.A stochastic power allocation approach composed of three steps is proposed.Firstly,the minimum number of channels and the channel set to be attacked are given.Secondly,a necessary condition and a sufficient condition on the packet loss probabilities of the channels in the attack set are provided for general and special systems,respectively.Finally,by converting the original coupling nonlinear programming problem to a linear programming problem,a method of searching attack probabilities and power to minimize the attack energy is proposed.The effectiveness of the proposed scheme is verified by simulation examples.展开更多
These days,deep learning and computer vision are much-growing fields in this modern world of information technology.Deep learning algorithms and computer vision have achieved great success in different applications li...These days,deep learning and computer vision are much-growing fields in this modern world of information technology.Deep learning algorithms and computer vision have achieved great success in different applications like image classification,speech recognition,self-driving vehicles,disease diagnostics,and many more.Despite success in various applications,it is found that these learning algorithms face severe threats due to adversarial attacks.Adversarial examples are inputs like images in the computer vision field,which are intentionally slightly changed or perturbed.These changes are humanly imperceptible.But are misclassified by a model with high probability and severely affects the performance or prediction.In this scenario,we present a deep image restoration model that restores adversarial examples so that the target model is classified correctly again.We proved that our defense method against adversarial attacks based on a deep image restoration model is simple and state-of-the-art by providing strong experimental results evidence.We have used MNIST and CIFAR10 datasets for experiments and analysis of our defense method.In the end,we have compared our method to other state-ofthe-art defense methods and proved that our results are better than other rival methods.展开更多
Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anyt...Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.展开更多
As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respo...As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.展开更多
This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assist...This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.展开更多
Code dissemination is one of the important services of wireless sensor networks (WSNs). Securing the process of code dissemination is essential in some certain WSNs applications, state-of-the-art secure code dissemina...Code dissemination is one of the important services of wireless sensor networks (WSNs). Securing the process of code dissemination is essential in some certain WSNs applications, state-of-the-art secure code dissemination protocols for WSNs aim for the efficient source authentication and integrity verification of code image, however, due to the resource constrains of WSNs and the epidemic behavior of the code dissemination system, existing secure code dissemination protocols are vulnerable to Denial of Service (DoS) attacks when sensor nodes can be compromised (insider DoS attacks). In this paper, we identify five different basic types of DoS attacks exploiting the epidemic propagation strategies used by Deluge. They are (1) Higher-version Advertisement attack, (2) False Request attack, (3) Larger-numbered Page attack, (4) Lower-version Adv attack, and (5) Same-version Adv attack. Simulation shows these susceptibilities caused by above insider DoS attacks. Some simple models are also proposed which promote understanding the problem of insider DoS attacks and attempt to quantify the severity of these attacks in the course of code dissemination in WSNs.展开更多
Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the...Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the communication face four threats: eavesdropping, interception, forgery, and alteration. In order to verify the IEC 61850 protocol communication problems, we used the simulation software to build the main operating equipment in the IEC 61850 network environment of the communication system. We verified IEC 61850 transmission protocol security defects, under DoS attack and Reply attack. In order to enhance security agreement, an improved algorithm was proposed based on identity authentication (W-EAP, Whitelist Based ECC & AES Protocol). Experimental results showed that the method can enhance the ability to resist attacks.展开更多
Energy and security remain the main two challenges in Wireless Sensor Networks(WSNs).Therefore,protecting these WSN networks from Denial of Service(DoS)and Distributed DoS(DDoS)is one of the WSN networks security task...Energy and security remain the main two challenges in Wireless Sensor Networks(WSNs).Therefore,protecting these WSN networks from Denial of Service(DoS)and Distributed DoS(DDoS)is one of the WSN networks security tasks.Traditional packet deep scan systems that rely on open field inspection in transport layer security packets and the open field encryption trend are making machine learning-based systems the only viable choice for these types of attacks.This paper contributes to the evaluation of the use machine learning algorithms in WSN nodes traffic and their effect on WSN network life time.We examined the performance metrics of different machine learning classification categories such asK-Nearest Neighbour(KNN),Logistic Regression(LR),Support Vector Machine(SVM),Gboost,Decision Tree(DT),Na飗e Bayes,Long Short Term Memory(LSTM),and Multi-Layer Perceptron(MLP)on aWSN-dataset in different sizes.The test results proved that the statistical and logical classification categories performed the best on numeric statistical datasets,and the Gboost algorithm showed the best performance compared to different algorithms on average of all performance metrics.The performance metrics used in these validations were accuracy,F1-score,False Positive Ratio(FPR),False Negative Ratio(FNR),and the training execution time.Moreover,the test results showed the Gboost algorithm got 99.6%,98.8%,0.4%0.13%in accuracy,F1-score,FPR,and FNR,respectively.At training execution time,it obtained 1.41 s for the average of all training time execution datasets.In addition,this paper demonstrated that for the numeric statistical data type,the best results are in the size of the dataset ranging from3000 to 6000 records and the percentage between categories is not less than 50%for each category with the other categories.Furthermore,this paper investigated the effect of Gboost on the WSN lifetime,which resulted in a 32%reduction compared to other Gboost-free scenarios.展开更多
A space called Unmanned Aerial Vehicle(UAV)cyber is a new environment where UAV,Ground Control Station(GCS)and business processes are integrated.Denial of service(DoS)attack is a standard network attack method,especia...A space called Unmanned Aerial Vehicle(UAV)cyber is a new environment where UAV,Ground Control Station(GCS)and business processes are integrated.Denial of service(DoS)attack is a standard network attack method,especially suitable for attacking the UAV cyber.It is a robust security risk for UAV cyber and has recently become an active research area.Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network.In addition,the honeypot,an effective security vulnerability defense mechanism,has not been widely adopted or modeled for defense against DoS attack UAV cyber.With this motivation,the current research paper presents a honeypot game theorymodel that considersGCS andDoS attacks,which is used to study the interaction between attack and defense to optimize defense strategies.The GCS and honeypot act as defenses against DoS attacks in this model,and both players select their appropriate methods and build their benefit function models.On this basis,a hierarchical honeypot and G2A network delay reward strategy are introduced so that the defender and the attacker can adjust their respective strategies dynamically.Finally,by adjusting the degree of camouflage of the honeypot for UAV network services,the overall revenue of the defender can be effectively improved.The proposed method proves the existence of a mixed strategy Nash equilibrium and compares it with the existing research on no delay rewards and no honeypot defense scheme.In addition,this method realizes that the UAV cyber still guarantees a network delay of about ten milliseconds in the presence of a DoS attack.The results demonstrate that our methodology is superior to that of previous studies.展开更多
In recent years,machine learning has become more and more popular,especially the continuous development of deep learning technology,which has brought great revolutions to many fields.In tasks such as image classificat...In recent years,machine learning has become more and more popular,especially the continuous development of deep learning technology,which has brought great revolutions to many fields.In tasks such as image classification,natural language processing,information hiding,multimedia synthesis,and so on,the performance of deep learning has far exceeded the traditional algorithms.However,researchers found that although deep learning can train an accurate model through a large amount of data to complete various tasks,the model is vulnerable to the example which is modified artificially.This technology is called adversarial attacks,while the examples are called adversarial examples.The existence of adversarial attacks poses a great threat to the security of the neural network.Based on the brief introduction of the concept and causes of adversarial example,this paper analyzes the main ideas of adversarial attacks,studies the representative classical adversarial attack methods and the detection and defense methods.展开更多
针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题,提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞队列控制方法.首先,采用马尔科夫随机过程,将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型,据...针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题,提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞队列控制方法.首先,采用马尔科夫随机过程,将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型,据此设计网联车安全队列控制协议.然后,采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数,并应用Lyapunov-Krasovskii稳定性理论,建立在外部扰动和随机DoS攻击下队列系统稳定性充分条件.在此基础上,分析得到该队列闭环系统的弦稳定性充分条件.最后,通过7辆车组成的队列系统对比仿真实验,验证该方法的优越性.展开更多
文摘Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of flooding the victim network with an enormous number of packets, hence exhausting the resources and preventing the legitimate users to access them. After having standard DDoS defense mechanism, still attackers are able to launch an attack. These inadequate defense mechanisms need to be improved and integrated with other solutions. The purpose of this paper is to study the characteristics of DDoS attacks, various models involved in attacks and to provide a timeline of defense mechanism with their improvements to combat DDoS attacks. In addition to this, a novel scheme is proposed to detect DDoS attack efficiently by using MapReduce programming model.
文摘Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.
文摘Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.
文摘Information Security is determined by three well know security parameters i.e. Confidentiality, Integrity and Availability. Availability is an important pillar when it comes to security of an information system. It is dependent upon the reliability, timeliness and accessibility of the Information System. This paper presents an analytical view of the fact that when Accessibility is degraded during the presence of an ongoing attack, the other factors reliability and timeliness can also get affected, therefore creating a degrading impact on the overall Availability of the system, which eventually leads to the Denial of Service Attack and therefore affecting the security of the System.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金the National Nat-ural Science Foundation of China under Grant No.62072406,No.U19B2016,No.U20B2038 and No.61871398the Natural Science Foundation of Zhejiang Province under Grant No.LY19F020025the Major Special Funding for“Science and Tech-nology Innovation 2025”in Ningbo under Grant No.2018B10063.
文摘The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金supported by the National Natural ScienceFoundation(NNSF)of China(61973082)Six Talent Peaks Project inJiangsu Province(XYDXX-005)。
文摘In this paper,denial of service(DoS)attack management for destroying the collaborative estimation in sensor networks and minimizing attack energy from the attacker perspective is studied.In the communication channels between sensors and a remote estimator,the attacker chooses some channels to randomly jam DoS attacks to make their packets randomly dropped.A stochastic power allocation approach composed of three steps is proposed.Firstly,the minimum number of channels and the channel set to be attacked are given.Secondly,a necessary condition and a sufficient condition on the packet loss probabilities of the channels in the attack set are provided for general and special systems,respectively.Finally,by converting the original coupling nonlinear programming problem to a linear programming problem,a method of searching attack probabilities and power to minimize the attack energy is proposed.The effectiveness of the proposed scheme is verified by simulation examples.
文摘These days,deep learning and computer vision are much-growing fields in this modern world of information technology.Deep learning algorithms and computer vision have achieved great success in different applications like image classification,speech recognition,self-driving vehicles,disease diagnostics,and many more.Despite success in various applications,it is found that these learning algorithms face severe threats due to adversarial attacks.Adversarial examples are inputs like images in the computer vision field,which are intentionally slightly changed or perturbed.These changes are humanly imperceptible.But are misclassified by a model with high probability and severely affects the performance or prediction.In this scenario,we present a deep image restoration model that restores adversarial examples so that the target model is classified correctly again.We proved that our defense method against adversarial attacks based on a deep image restoration model is simple and state-of-the-art by providing strong experimental results evidence.We have used MNIST and CIFAR10 datasets for experiments and analysis of our defense method.In the end,we have compared our method to other state-ofthe-art defense methods and proved that our results are better than other rival methods.
文摘Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.
文摘As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.
文摘This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.
文摘Code dissemination is one of the important services of wireless sensor networks (WSNs). Securing the process of code dissemination is essential in some certain WSNs applications, state-of-the-art secure code dissemination protocols for WSNs aim for the efficient source authentication and integrity verification of code image, however, due to the resource constrains of WSNs and the epidemic behavior of the code dissemination system, existing secure code dissemination protocols are vulnerable to Denial of Service (DoS) attacks when sensor nodes can be compromised (insider DoS attacks). In this paper, we identify five different basic types of DoS attacks exploiting the epidemic propagation strategies used by Deluge. They are (1) Higher-version Advertisement attack, (2) False Request attack, (3) Larger-numbered Page attack, (4) Lower-version Adv attack, and (5) Same-version Adv attack. Simulation shows these susceptibilities caused by above insider DoS attacks. Some simple models are also proposed which promote understanding the problem of insider DoS attacks and attempt to quantify the severity of these attacks in the course of code dissemination in WSNs.
文摘Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the communication face four threats: eavesdropping, interception, forgery, and alteration. In order to verify the IEC 61850 protocol communication problems, we used the simulation software to build the main operating equipment in the IEC 61850 network environment of the communication system. We verified IEC 61850 transmission protocol security defects, under DoS attack and Reply attack. In order to enhance security agreement, an improved algorithm was proposed based on identity authentication (W-EAP, Whitelist Based ECC & AES Protocol). Experimental results showed that the method can enhance the ability to resist attacks.
文摘Energy and security remain the main two challenges in Wireless Sensor Networks(WSNs).Therefore,protecting these WSN networks from Denial of Service(DoS)and Distributed DoS(DDoS)is one of the WSN networks security tasks.Traditional packet deep scan systems that rely on open field inspection in transport layer security packets and the open field encryption trend are making machine learning-based systems the only viable choice for these types of attacks.This paper contributes to the evaluation of the use machine learning algorithms in WSN nodes traffic and their effect on WSN network life time.We examined the performance metrics of different machine learning classification categories such asK-Nearest Neighbour(KNN),Logistic Regression(LR),Support Vector Machine(SVM),Gboost,Decision Tree(DT),Na飗e Bayes,Long Short Term Memory(LSTM),and Multi-Layer Perceptron(MLP)on aWSN-dataset in different sizes.The test results proved that the statistical and logical classification categories performed the best on numeric statistical datasets,and the Gboost algorithm showed the best performance compared to different algorithms on average of all performance metrics.The performance metrics used in these validations were accuracy,F1-score,False Positive Ratio(FPR),False Negative Ratio(FNR),and the training execution time.Moreover,the test results showed the Gboost algorithm got 99.6%,98.8%,0.4%0.13%in accuracy,F1-score,FPR,and FNR,respectively.At training execution time,it obtained 1.41 s for the average of all training time execution datasets.In addition,this paper demonstrated that for the numeric statistical data type,the best results are in the size of the dataset ranging from3000 to 6000 records and the percentage between categories is not less than 50%for each category with the other categories.Furthermore,this paper investigated the effect of Gboost on the WSN lifetime,which resulted in a 32%reduction compared to other Gboost-free scenarios.
基金Basic Scientific Research program of China JCKY2020203C025 funding is involved in this study.
文摘A space called Unmanned Aerial Vehicle(UAV)cyber is a new environment where UAV,Ground Control Station(GCS)and business processes are integrated.Denial of service(DoS)attack is a standard network attack method,especially suitable for attacking the UAV cyber.It is a robust security risk for UAV cyber and has recently become an active research area.Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network.In addition,the honeypot,an effective security vulnerability defense mechanism,has not been widely adopted or modeled for defense against DoS attack UAV cyber.With this motivation,the current research paper presents a honeypot game theorymodel that considersGCS andDoS attacks,which is used to study the interaction between attack and defense to optimize defense strategies.The GCS and honeypot act as defenses against DoS attacks in this model,and both players select their appropriate methods and build their benefit function models.On this basis,a hierarchical honeypot and G2A network delay reward strategy are introduced so that the defender and the attacker can adjust their respective strategies dynamically.Finally,by adjusting the degree of camouflage of the honeypot for UAV network services,the overall revenue of the defender can be effectively improved.The proposed method proves the existence of a mixed strategy Nash equilibrium and compares it with the existing research on no delay rewards and no honeypot defense scheme.In addition,this method realizes that the UAV cyber still guarantees a network delay of about ten milliseconds in the presence of a DoS attack.The results demonstrate that our methodology is superior to that of previous studies.
文摘In recent years,machine learning has become more and more popular,especially the continuous development of deep learning technology,which has brought great revolutions to many fields.In tasks such as image classification,natural language processing,information hiding,multimedia synthesis,and so on,the performance of deep learning has far exceeded the traditional algorithms.However,researchers found that although deep learning can train an accurate model through a large amount of data to complete various tasks,the model is vulnerable to the example which is modified artificially.This technology is called adversarial attacks,while the examples are called adversarial examples.The existence of adversarial attacks poses a great threat to the security of the neural network.Based on the brief introduction of the concept and causes of adversarial example,this paper analyzes the main ideas of adversarial attacks,studies the representative classical adversarial attack methods and the detection and defense methods.