In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magn...In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magnets.Theoretical analyzes and simulations for the ABEH are carried out.First,the mathematical model is established and its dynamical equations are derived.The formulas of magnetic force in two directions are given.The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells.To demonstrate the ABEH's advantage in harvesting energy,comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations.Our results reveal that the ABEH's inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations.Thus,it can generate a higher output power.The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11172234)the Scholarship from China Scholarship Council(Grant No.201506290092)
文摘In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magnets.Theoretical analyzes and simulations for the ABEH are carried out.First,the mathematical model is established and its dynamical equations are derived.The formulas of magnetic force in two directions are given.The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells.To demonstrate the ABEH's advantage in harvesting energy,comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations.Our results reveal that the ABEH's inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations.Thus,it can generate a higher output power.The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance.