For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the proc...For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.展开更多
Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate...Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.展开更多
Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a gene...Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.展开更多
Estimation of postmortem interval(PMI)is vitally important in forensic investigations.Although many studies have examined the chemical changes of various tissues over time,no reports using spectroscopic methods in adi...Estimation of postmortem interval(PMI)is vitally important in forensic investigations.Although many studies have examined the chemical changes of various tissues over time,no reports using spectroscopic methods in adipose tissue are available.In this study,attenuated total reflectance-Fourier transform infrared(ATR-FTIR)spectroscopy was utilized to collect comprehensive biochemical information from human adipose tissues in vitro at different times.Thereafter,mice were used as samples for in vivo experiments for more detailed studies on PMI.Then,partial least squares(PLS)model for PMI estimation was established based on the acquired spectral dataset of mouse samples.The spectral variable associated with C=O arising from lipids and free fatty acids was most susceptible to PMI.Moreover,the PLS model appeared to achieve a satisfactory prediction with a root mean square error of cross‑validation of 1.78 days,and the reliability of the model was determined in an external validation set with a root mean square error of prediction of 1.87 days.The study shows the possibility of application of ATR-FTIR methods in PMI estimation using adipose tissue.展开更多
Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple anal...Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.展开更多
This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements wer...This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements were performed on 187 sediment samples from four reservoirs to develop calibration models that relate FTIR spectral information with conventional property concentrations using partial least squares regression(PLSR).Robust calibration models were established for TOC and TN content.The external validation of these models yielded a significant correlation between FTIR-inferred and conventionally measured concentrations of R^(2)=0.88 for TOC,R^(2)=0.90 for TN.This method can be performed with a small sample size and is non-destructive throughout the simple measurement process.The TOC and TN content in the sediment can be determined with high effectiveness without being overly expensive,making it an advantageous method when measuring a large number of samples.展开更多
Deliquescence and efflorescence are the two most important physicochemical processes of aerosol particles. In deliquescence and efflorescence cycles of aerosol particles, many fundamental problems need to be investiga...Deliquescence and efflorescence are the two most important physicochemical processes of aerosol particles. In deliquescence and efflorescence cycles of aerosol particles, many fundamental problems need to be investigated in detail on the molecular level, including ion and molecule interactions in supersaturated aerosols, metastable solid phases that may be formed, and microscopic structures and deliquescence mechanisms of aerosol particles. This paper presents a summary of the progress made in recent investigations of deliquescence and efflorescence processes of aerosol particles by four common spectral techniques, which are known as Raman/electrodynamic balance, Fourier transform infrared/aerosol flow tube, Fourier transform infrared/attenuated total reftection, and confocal Raman on a quartz substrate.展开更多
The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the...The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.展开更多
文摘For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.
文摘Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.
基金supported by the USDA-ARS Research Project#6054-21000-017-0ODCotton Incorporated-sponsored project#19-858
文摘Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.
基金This study was funded by the Council of the National Natural Science Foundation of China(No.81730056).
文摘Estimation of postmortem interval(PMI)is vitally important in forensic investigations.Although many studies have examined the chemical changes of various tissues over time,no reports using spectroscopic methods in adipose tissue are available.In this study,attenuated total reflectance-Fourier transform infrared(ATR-FTIR)spectroscopy was utilized to collect comprehensive biochemical information from human adipose tissues in vitro at different times.Thereafter,mice were used as samples for in vivo experiments for more detailed studies on PMI.Then,partial least squares(PLS)model for PMI estimation was established based on the acquired spectral dataset of mouse samples.The spectral variable associated with C=O arising from lipids and free fatty acids was most susceptible to PMI.Moreover,the PLS model appeared to achieve a satisfactory prediction with a root mean square error of cross‑validation of 1.78 days,and the reliability of the model was determined in an external validation set with a root mean square error of prediction of 1.87 days.The study shows the possibility of application of ATR-FTIR methods in PMI estimation using adipose tissue.
文摘Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.
基金This work was supported by the National Key Research and Development Program of China(2016YFA0601003)Shanghai Science and Technology Development Foundation(19010500100).
文摘This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements were performed on 187 sediment samples from four reservoirs to develop calibration models that relate FTIR spectral information with conventional property concentrations using partial least squares regression(PLSR).Robust calibration models were established for TOC and TN content.The external validation of these models yielded a significant correlation between FTIR-inferred and conventionally measured concentrations of R^(2)=0.88 for TOC,R^(2)=0.90 for TN.This method can be performed with a small sample size and is non-destructive throughout the simple measurement process.The TOC and TN content in the sediment can be determined with high effectiveness without being overly expensive,making it an advantageous method when measuring a large number of samples.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20073004, No.20473012, No.20673010, and No.20640420450), the 111 Project B07012, and the China Postdoctoral Science Foundation (No.20070410466). The Trans-Century Training Program Foundation for the Talents by the Ministry of Education of China was also gratefully acknowledged.
文摘Deliquescence and efflorescence are the two most important physicochemical processes of aerosol particles. In deliquescence and efflorescence cycles of aerosol particles, many fundamental problems need to be investigated in detail on the molecular level, including ion and molecule interactions in supersaturated aerosols, metastable solid phases that may be formed, and microscopic structures and deliquescence mechanisms of aerosol particles. This paper presents a summary of the progress made in recent investigations of deliquescence and efflorescence processes of aerosol particles by four common spectral techniques, which are known as Raman/electrodynamic balance, Fourier transform infrared/aerosol flow tube, Fourier transform infrared/attenuated total reftection, and confocal Raman on a quartz substrate.
文摘The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.