To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierar...According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.展开更多
Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers ...Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and qu...A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index syste...Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.展开更多
[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[...[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.展开更多
The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in...The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.展开更多
In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed...In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed by field investigation and analytic hierarchy process(AHP).The application value of wild flowers in Hefei was evaluated by selecting evaluation indicators from three aspects of ornamental value,adaptability and resource potential.展开更多
Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, g...Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Base...System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Based on analytic hierarchy process and Delphi methods,the natural resources security situation has been evaluated systematically from 1991 to 2007.The result showed that the overall level of China's natural resources security presented a downtrend from 1991 to 2007.The basic reasons are the pressure indicators such as population,GDP,natural resources trade increased gradually,resulting in tension and fragility of natural resources security.展开更多
This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It ...This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.展开更多
To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the...To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the operation state of the pitch system of WT based on fuzzy comprehensive evaluation.Firstly,based on SCADA data,the working state of the pitch system under rated power state and power state of WT were analyzed.Secondly,through the analysis of characteristic parameters and physical mechanism of the pitch system,the consistency principle of characteristic parameters,the stability principle of power under rated state,and the stability principle of blade angle underpowered state were obtained.Next,based on the aforementioned principles,the evaluation indexes were established,and the fuzzy comprehensive evaluation method was used to establish the operation state evaluation model of the pitch system under rated power state and under power state of the WT.Finally,an example was provided to verify the effectiveness of the method.The evaluation model established in this study can be used as a technical reference for the online monitoring of WT pitch systems to ensure the safe and stable operation of WTs.展开更多
The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of e...The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.展开更多
With global warming, heat stress is becoming a more frequent event and a major limiting factor for crop production. The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant geno...With global warming, heat stress is becoming a more frequent event and a major limiting factor for crop production. The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant genotypes and breeders to improve the thermo-tolerance of plants. Therefore, it is very important to perfect the existing evaluation system for thermo-tolerance. In this study, 30 tomato genotypes were treated with heat stress at germination, seedling and flowering stages. Each index was different and diverse in different tomato genotypes by doing variability analysis, difference analysis and Student's t test. Before principal component analysis (PCA), a positive treatment for the negative and moderation indexes was performed. After correlation analysis, the authors performed PCA (including dimensionality reduction (DR), no dimensionality reduction (NDR) and optimal index (OI)), combining with subordinate function (SF), weight and cluster analysis. No matter at germination or seedling stage, the members of the groups were basically identical for DR, NDR and OI. Then 10 tomato genotypes were chosen from 30 randomly for verification. Compared all the evaluation systems, OI was the simplest and also could get as credible results as other methods. Therefore, in this study, OI could be adopted and improve the efficiency during the evaluation. At germination stage, germination power (GP) can accurately evaluate the thermo-tolerance, and at seedling stage, it was fresh weight (FW), internode length (IL) and dry matter percentage of seedling (DMP). Finally, all the indexes in the three stages were applied correlation analysis. Seedling stage showed significant positive correlation with flowering stage. In conclusion, this work improves the current system and set up a new comprehensive evaluation method named OI, which also improves the efficiency, guarantees reliability in screening thermo-tolerance of tomato for cultivators and expedites the process of breeding for resistance.展开更多
According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is ap...According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is applied in the practice teaching quality evaluation system, and improved the practice teaching quality evaluation results and the accuracy of visual, and promote the teaching management scientific, standardized and institutionalized. In order to establish incentive mechanism, it can bring a positive role to improve teaching quality.展开更多
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
文摘According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.
基金Supported by the Natural Science Foundation of Guangxi Province(2011GXNSFB018061)the High-grade Scientific Research(Cultivation)Program of Qinzhou University(2014PY-SJ03,2014PY-SJ01)~~
文摘Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
文摘A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
文摘Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.
基金Supported by China Agricultural Industry Research System(CARS-23-G31)Technology Innovation Guidance Project of Changde City(CDKJJ20220265,CDKJJ2023YF33).
文摘[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.
基金financially supported by the National Natural Science Fund, China (Grant Nos. 31200376, 41201586)the CAS Visiting Professor-Ship for Senior International Scientists (Grant No. 2013T2Z0011)
文摘The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.
基金Sponsored by the National Innovation Training Project for University Students in 2023(202312216024)Provincial Innovation Training Project for University Students in 2022(S202212216117)+1 种基金Key Research Project of Natural Science in Universities of Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed by field investigation and analytic hierarchy process(AHP).The application value of wild flowers in Hefei was evaluated by selecting evaluation indicators from three aspects of ornamental value,adaptability and resource potential.
文摘Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
基金supported by the National Natural Science Foundation of China(Grant nos.70873119 and 40871253)Chinese Academy of Sciences Knowledge Innovation Program(Grant no.066U0401SZ)
文摘System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Based on analytic hierarchy process and Delphi methods,the natural resources security situation has been evaluated systematically from 1991 to 2007.The result showed that the overall level of China's natural resources security presented a downtrend from 1991 to 2007.The basic reasons are the pressure indicators such as population,GDP,natural resources trade increased gradually,resulting in tension and fragility of natural resources security.
基金supported by Ecole Nationale Superieure des Arts et Industries Textiles of Francethe National Science Foundation of China(Grant No.60074014)Sichuan Youth Science and Technology Foundation of China
文摘This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.
基金supported by National Natural Science Foundation of China(Nos.51875199 and 51905165)Hunan Natural Science Fund Project(2019JJ50186)the Key Research and Development Program of Hunan Province(No.2018GK2073).
文摘To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the operation state of the pitch system of WT based on fuzzy comprehensive evaluation.Firstly,based on SCADA data,the working state of the pitch system under rated power state and power state of WT were analyzed.Secondly,through the analysis of characteristic parameters and physical mechanism of the pitch system,the consistency principle of characteristic parameters,the stability principle of power under rated state,and the stability principle of blade angle underpowered state were obtained.Next,based on the aforementioned principles,the evaluation indexes were established,and the fuzzy comprehensive evaluation method was used to establish the operation state evaluation model of the pitch system under rated power state and under power state of the WT.Finally,an example was provided to verify the effectiveness of the method.The evaluation model established in this study can be used as a technical reference for the online monitoring of WT pitch systems to ensure the safe and stable operation of WTs.
文摘The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.
基金This work was supported by grants from the Natural Science Foundation of Youth Jiangsu Province (BIC20160579).
文摘With global warming, heat stress is becoming a more frequent event and a major limiting factor for crop production. The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant genotypes and breeders to improve the thermo-tolerance of plants. Therefore, it is very important to perfect the existing evaluation system for thermo-tolerance. In this study, 30 tomato genotypes were treated with heat stress at germination, seedling and flowering stages. Each index was different and diverse in different tomato genotypes by doing variability analysis, difference analysis and Student's t test. Before principal component analysis (PCA), a positive treatment for the negative and moderation indexes was performed. After correlation analysis, the authors performed PCA (including dimensionality reduction (DR), no dimensionality reduction (NDR) and optimal index (OI)), combining with subordinate function (SF), weight and cluster analysis. No matter at germination or seedling stage, the members of the groups were basically identical for DR, NDR and OI. Then 10 tomato genotypes were chosen from 30 randomly for verification. Compared all the evaluation systems, OI was the simplest and also could get as credible results as other methods. Therefore, in this study, OI could be adopted and improve the efficiency during the evaluation. At germination stage, germination power (GP) can accurately evaluate the thermo-tolerance, and at seedling stage, it was fresh weight (FW), internode length (IL) and dry matter percentage of seedling (DMP). Finally, all the indexes in the three stages were applied correlation analysis. Seedling stage showed significant positive correlation with flowering stage. In conclusion, this work improves the current system and set up a new comprehensive evaluation method named OI, which also improves the efficiency, guarantees reliability in screening thermo-tolerance of tomato for cultivators and expedites the process of breeding for resistance.
文摘According to the theory of fuzzy mathematics, Fuzzy comprehensive evaluation method of the original algorithm is improved, and reduced the possibility loss of the original evaluation data. The improved algorithm is applied in the practice teaching quality evaluation system, and improved the practice teaching quality evaluation results and the accuracy of visual, and promote the teaching management scientific, standardized and institutionalized. In order to establish incentive mechanism, it can bring a positive role to improve teaching quality.