For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significa...Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems.展开更多
Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional gr...Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional greedy-based neighborhood rough set attribute reduction algorithms have a high computational complexity and long processing time. In this paper, a novel attribute reduction algorithm based on attribute importance is proposed. By using conditional information, the attribute reduction problem in neighborhood rough sets is discussed, and the importance of attributes is measured by conditional information gain. The algorithm iteratively removes the attribute with the lowest importance, thus achieving the goal of attribute reduction. Six groups of UCI datasets are selected, and the proposed algorithm SAR is compared with L<sub>2</sub>-ELM, LapTELM, CTSVM, and TBSVM classifiers. The results demonstrate that SAR can effectively improve the time consumption and accuracy issues in attribute reduction.展开更多
The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, el...The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current databases precludes the use of greedy methods to find optimal or suboptimal reducts in the search space and requires the use of stochastic methods. In this context, the calculation of reducts is typically performed by a genetic algorithm, but other metaheuristics have been proposed with better performance. This work proposes the innovative use of two known metaheuristics for this calculation, the Variable Neighborhood Search, the Variable Neighborhood Descent, besides a third heuristic called Decrescent Cardinality Search. The last one is a new heuristic specifically proposed for reduct calculation. Considering some databases commonly found in the literature of the area, the reducts that have been obtained present lower cardinality, i.e., a lower number of attributes.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations...Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.展开更多
The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general red...The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.展开更多
In order to reduce redundant features in air combat information and to meet the requirements of real-time decision in combat, rough set theory is introduced to the tactical decision analysis in cooperative team air co...In order to reduce redundant features in air combat information and to meet the requirements of real-time decision in combat, rough set theory is introduced to the tactical decision analysis in cooperative team air combat. An algorithm of attribute reduction for extracting key combat information and generating tactical rules from given air combat databases is presented. Then, considering the practical requirements of team combat, a method for reduction of attribute-values under single decision attribute is extended to the reduction under multi-decision attributes. Finally, the algorithm is verified with an example for tactical choices in team air combat. The results show that, the redundant attributes in air combat information can be reduced, and that the main combat attributes, i.e., the information about radar command and medium-range guided missile, can be obtained with the algorithm mentioned above, moreover, the minimal reduced strategy for tactical decision can be generated without losing the result of key information classification. The decision rules extracted agree with the real situation of team air combat.展开更多
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ...Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.展开更多
It is being widely studied how to extract knowledge from a decision table based on rough set theory. The novel problem is how to discretize a decision table having continuous attribute. In order to obtain more reasona...It is being widely studied how to extract knowledge from a decision table based on rough set theory. The novel problem is how to discretize a decision table having continuous attribute. In order to obtain more reasonable discretization results, a discretization algorithm is proposed, which arranges half-global discretization based on the correlational coefficient of each continuous attribute while considering the uniqueness of rough set theory. When choosing heuristic information, stability is combined with rough entropy. In terms of stability, the possibility of classifying objects belonging to certain sub-interval of a given attribute into neighbor sub-intervals is minimized. By doing this, rational discrete intervals can be determined. Rough entropy is employed to decide the optimal cut-points while guaranteeing the consistency of the decision table after discretization. Thought of this algorithm is elaborated through Iris data and then some experiments by comparing outcomes of four discritized datasets are also given, which are calculated by the proposed algorithm and four other typical algorithras for discritization respectively. After that, classification rules are deduced and summarized through rough set based classifiers. Results show that the proposed discretization algorithm is able to generate optimal classification accuracy while minimizing the number of discrete intervals. It displays superiority especially when dealing with a decision table having a large attribute number.展开更多
The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of me...The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of membership functions and membership degrees to get the normative decision table. The regular method of relations and the reduction algorithm of attributes are studied. The reduced relations are presented by the multi-representvalue method and its algorithm is offered. The whole knowledge acquisition process has high degree of automation and the extracted knowledge is true and reliable.展开更多
It is well-known that attribute reduction is a crucial action of rough set.The significant characteristic of attribute reduction is that it can reduce the dimensions of data with clear semantic explanations.Normally,t...It is well-known that attribute reduction is a crucial action of rough set.The significant characteristic of attribute reduction is that it can reduce the dimensions of data with clear semantic explanations.Normally,the learning performance of attributes in derived reduct is much more crucial.Since related measures of rough set dominate the whole process of identifying qualified attributes and deriving reduct,those measures may have a direct impact on the performance of selected attributes in reduct.However,most previous researches about attribute reduction take measures related to either supervised perspective or unsupervised perspective,which are insufficient to identify attributes with superior learning performance,such as stability and accuracy.In order to improve the classification stability and classification accuracy of reduct,in this paper,a novel measure is proposed based on the fusion of supervised and unsupervised perspectives:(1)in terms of supervised perspective,approximation quality is helpful in quantitatively characterizing the relationship between attributes and labels;(2)in terms of unsupervised perspective,conditional entropy is helpful in quantitatively describing the internal structure of data itself.In order to prove the effectiveness of the proposed measure,18 University of CaliforniaIrvine(UCI)datasets and 2 Yale face datasets have been employed in the comparative experiments.Finally,the experimental results show that the proposed measure does well in selecting attributes which can provide distinguished classification stabilities and classification accuracies.展开更多
Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been us...Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.展开更多
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe...As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.展开更多
A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space eonsisting of all the information from many sources is not always good. The strategy that the original inp...A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space eonsisting of all the information from many sources is not always good. The strategy that the original input space is partitioned into several input subspaces usually works for improving the performance. Different from conventional partition methods, the partition method used in this paper, rough sets theory based attribute reduction, allows the input subspaces partially overlapped. These input subspaces can offer complementary information about hidden data patterns. In every subspace, an SVM sub-classifier is learned. With the information fusion techniques, those SVM sub-classifiers with better performance are selected and combined to construct an SVM ensemble. The proposed method is applied to decision-making of medical diagnosis. Comparison of performance between our method and several other popular ensemble methods is done. Experimental results demonstrate that our proposed approach can make full use of the information contained in data and improve the decision-making performance.展开更多
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se...Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.展开更多
A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confide...A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confidence measures and a β-reduct, the VPRS model can rationally solve the conflicting decision analysis problem with multiple decision attributes and multiple condition attributes. For illustration, a medical diagnosis example is utilized to show the feasibility of the VPRS model in solving the MADA problem with multiple decision attributes and multiple condition attributes. Empirical results show that the decision rule with the highest confidence measures will be used as the final decision rules in the MADA problem with multiple conflicting decision attributes and multiple condition attributes if there are some conflicts among decision rules resulting from multiple decision attributes. The confidence-measure-based VPRS model can effectively solve the conflicts of decision rules from multiple decision attributes and thus a class of MADA problem with multiple conflicting decision attributes and multiple condition attributes are solved.展开更多
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China (Nos.62006099,62076111)the Key Laboratory of Oceanographic Big Data Mining&Application of Zhejiang Province (No.OBDMA202104).
文摘Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems.
文摘Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional greedy-based neighborhood rough set attribute reduction algorithms have a high computational complexity and long processing time. In this paper, a novel attribute reduction algorithm based on attribute importance is proposed. By using conditional information, the attribute reduction problem in neighborhood rough sets is discussed, and the importance of attributes is measured by conditional information gain. The algorithm iteratively removes the attribute with the lowest importance, thus achieving the goal of attribute reduction. Six groups of UCI datasets are selected, and the proposed algorithm SAR is compared with L<sub>2</sub>-ELM, LapTELM, CTSVM, and TBSVM classifiers. The results demonstrate that SAR can effectively improve the time consumption and accuracy issues in attribute reduction.
文摘The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current databases precludes the use of greedy methods to find optimal or suboptimal reducts in the search space and requires the use of stochastic methods. In this context, the calculation of reducts is typically performed by a genetic algorithm, but other metaheuristics have been proposed with better performance. This work proposes the innovative use of two known metaheuristics for this calculation, the Variable Neighborhood Search, the Variable Neighborhood Descent, besides a third heuristic called Decrescent Cardinality Search. The last one is a new heuristic specifically proposed for reduct calculation. Considering some databases commonly found in the literature of the area, the reducts that have been obtained present lower cardinality, i.e., a lower number of attributes.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 102.05-2021.10.
文摘Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.
基金Supported by the National Natural Science Foundation of China (No.60308002)
文摘The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.
基金Preliminary research foundation of national defense
文摘In order to reduce redundant features in air combat information and to meet the requirements of real-time decision in combat, rough set theory is introduced to the tactical decision analysis in cooperative team air combat. An algorithm of attribute reduction for extracting key combat information and generating tactical rules from given air combat databases is presented. Then, considering the practical requirements of team combat, a method for reduction of attribute-values under single decision attribute is extended to the reduction under multi-decision attributes. Finally, the algorithm is verified with an example for tactical choices in team air combat. The results show that, the redundant attributes in air combat information can be reduced, and that the main combat attributes, i.e., the information about radar command and medium-range guided missile, can be obtained with the algorithm mentioned above, moreover, the minimal reduced strategy for tactical decision can be generated without losing the result of key information classification. The decision rules extracted agree with the real situation of team air combat.
基金supported by the National Natural Science Foundation of China (60873069 61171132)+3 种基金the Jiangsu Government Scholarship for Overseas Studies (JS-2010-K005)the Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11 0219)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (KJS1023)the Applying Study Foundation of Nantong (BK2011062)
文摘Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.
文摘It is being widely studied how to extract knowledge from a decision table based on rough set theory. The novel problem is how to discretize a decision table having continuous attribute. In order to obtain more reasonable discretization results, a discretization algorithm is proposed, which arranges half-global discretization based on the correlational coefficient of each continuous attribute while considering the uniqueness of rough set theory. When choosing heuristic information, stability is combined with rough entropy. In terms of stability, the possibility of classifying objects belonging to certain sub-interval of a given attribute into neighbor sub-intervals is minimized. By doing this, rational discrete intervals can be determined. Rough entropy is employed to decide the optimal cut-points while guaranteeing the consistency of the decision table after discretization. Thought of this algorithm is elaborated through Iris data and then some experiments by comparing outcomes of four discritized datasets are also given, which are calculated by the proposed algorithm and four other typical algorithras for discritization respectively. After that, classification rules are deduced and summarized through rough set based classifiers. Results show that the proposed discretization algorithm is able to generate optimal classification accuracy while minimizing the number of discrete intervals. It displays superiority especially when dealing with a decision table having a large attribute number.
基金the National Natural Science Foundation of China (50275113).
文摘The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of membership functions and membership degrees to get the normative decision table. The regular method of relations and the reduction algorithm of attributes are studied. The reduced relations are presented by the multi-representvalue method and its algorithm is offered. The whole knowledge acquisition process has high degree of automation and the extracted knowledge is true and reliable.
基金supported by the National Natural Science Foundation of China(Grant Nos.62006099,62076111)the Key Research and Development Program of Zhenjiang-Social Development(Grant No.SH2018005)+1 种基金the Natural Science Foundation of Jiangsu Higher Education(Grant No.17KJB520007)Industry-school Cooperative Education Program of the Ministry of Education(Grant No.202101363034).
文摘It is well-known that attribute reduction is a crucial action of rough set.The significant characteristic of attribute reduction is that it can reduce the dimensions of data with clear semantic explanations.Normally,the learning performance of attributes in derived reduct is much more crucial.Since related measures of rough set dominate the whole process of identifying qualified attributes and deriving reduct,those measures may have a direct impact on the performance of selected attributes in reduct.However,most previous researches about attribute reduction take measures related to either supervised perspective or unsupervised perspective,which are insufficient to identify attributes with superior learning performance,such as stability and accuracy.In order to improve the classification stability and classification accuracy of reduct,in this paper,a novel measure is proposed based on the fusion of supervised and unsupervised perspectives:(1)in terms of supervised perspective,approximation quality is helpful in quantitatively characterizing the relationship between attributes and labels;(2)in terms of unsupervised perspective,conditional entropy is helpful in quantitatively describing the internal structure of data itself.In order to prove the effectiveness of the proposed measure,18 University of CaliforniaIrvine(UCI)datasets and 2 Yale face datasets have been employed in the comparative experiments.Finally,the experimental results show that the proposed measure does well in selecting attributes which can provide distinguished classification stabilities and classification accuracies.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan period, and the UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.
基金Project Supported by National Natural Science Foundation of China (50607023), Natural Science Femdation of CQ CSTC (2006BB2189)
文摘As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.
基金Supported by the High Technology Research and Development Programme of China (2002AA412010), and the National Key Basic Research and Development Program of China (2002cb312200) and the National Natural Science Foundation of China (60174038).
文摘A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space eonsisting of all the information from many sources is not always good. The strategy that the original input space is partitioned into several input subspaces usually works for improving the performance. Different from conventional partition methods, the partition method used in this paper, rough sets theory based attribute reduction, allows the input subspaces partially overlapped. These input subspaces can offer complementary information about hidden data patterns. In every subspace, an SVM sub-classifier is learned. With the information fusion techniques, those SVM sub-classifiers with better performance are selected and combined to construct an SVM ensemble. The proposed method is applied to decision-making of medical diagnosis. Comparison of performance between our method and several other popular ensemble methods is done. Experimental results demonstrate that our proposed approach can make full use of the information contained in data and improve the decision-making performance.
基金supported by a grant of NSFC(70871036)a grant of National Basic Research Program of China(2009CB219801-3)
文摘Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.
基金The National Natural Science Foundation of China (No.70221001)the Knowledge Innovation Program of Chinese Academyof Sciences (No.3547600)Strategy Research Grant of City University of Hong Kong (No.7001677)
文摘A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confidence measures and a β-reduct, the VPRS model can rationally solve the conflicting decision analysis problem with multiple decision attributes and multiple condition attributes. For illustration, a medical diagnosis example is utilized to show the feasibility of the VPRS model in solving the MADA problem with multiple decision attributes and multiple condition attributes. Empirical results show that the decision rule with the highest confidence measures will be used as the final decision rules in the MADA problem with multiple conflicting decision attributes and multiple condition attributes if there are some conflicts among decision rules resulting from multiple decision attributes. The confidence-measure-based VPRS model can effectively solve the conflicts of decision rules from multiple decision attributes and thus a class of MADA problem with multiple conflicting decision attributes and multiple condition attributes are solved.