The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been stu...The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been studied, and the variation of the ferrite volume fraction with temperature in α+ γ dual phase steel has been investigated. The relative expressions are derived from many experimental results, which provides a basis for quantitative calculation, composition design, determination of the working processes,and prediction of the mechanical properties and the structure of the austenitic steels.展开更多
The relationship between the γ/(γ+δ) boundary temperature Tδ of austenitic steels and the equivalent weights of [Crl and [Ni] and the variation rule of the δ phase volume with the temperature are studied With th...The relationship between the γ/(γ+δ) boundary temperature Tδ of austenitic steels and the equivalent weights of [Crl and [Ni] and the variation rule of the δ phase volume with the temperature are studied With the aid of computer,the regressives expression derived from the experimental results are Tδ(℃) = T4 -21.2[Cr] +15.8[Ni]-223. Vδ(%)=0.715 exp 0.015(T-Tδ).展开更多
Nanoprecipitates and nanoscale retained austenite(RA)with suitable stability play crucial roles in deter-mining the yield strength(YS)and ductility of ultrahigh strength steels(UHSSs).However,owing to the kinetics inc...Nanoprecipitates and nanoscale retained austenite(RA)with suitable stability play crucial roles in deter-mining the yield strength(YS)and ductility of ultrahigh strength steels(UHSSs).However,owing to the kinetics incompatibility between nanoprecipitation and austenite reversion,it is highly challenging to si-multaneously introduce high-density nanoprecipitates and optimized RA in UHSSs.In this work,through the combination of austenite reversion treatment(ART)and subsequent flash austenitizing(FA),nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process.This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase.The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn)and(Mo,Cr)_(2)C and nanoscale austenite stabilized via Mn and Ni enrichment.The hard martensitic matrix strengthened by high-density dual-nanoprecipitates con-strains the plastic deformation of soft RA with a relatively low fraction of-15%,and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity(TRIP)effect.As a result,the newly-developed UHSS exhibits an ultrahigh YS of-1.7 GPa,an ultimate tensile strength(UTS)of-1.8 GPa,a large uniform elongation(UE)of-8.5%,and a total elongation(TE)of-13%.The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.展开更多
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr...The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.展开更多
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t...The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.展开更多
The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(ma...The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.展开更多
The austenite stability and the mechanical properties in a typical medium Mn grade steel,i.e.,5Mn steel,were investigated under a wide range of strain rates through the combination of experimental and theoretical meth...The austenite stability and the mechanical properties in a typical medium Mn grade steel,i.e.,5Mn steel,were investigated under a wide range of strain rates through the combination of experimental and theoretical methodologies.The obtained results indicate that austenite is more stable at a high strain rate,which is due to the suppression of the austenite to martensite transformation.This suppression is attributed to the increased stacking fault energy and the high deformation energy barrier.Moreover,the suppression of martensitic transformation also leads to the decrease in the ultimate tensile strength and the uniform elongation.Owing to the increase in an adiabatic heating temperature,an increase in the uniform elongation is acquired at a high strain rate.The obtained fundamental study results shed light on a wide application of the medium Mn steel under different strain rate conditions.展开更多
Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and ...Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.展开更多
Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kin...Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr's circle methods, respectively. Simulation and mechanical test results showed that The decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in y phase would be lower than 20 wt.%. And the simulation value of M; (stress induced critical martensite transformation temperature) would be up to 80 ℃, which was about 60℃ higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.展开更多
Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In t...Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In this paper,a medium-Mn steel with Mn content as low as 2.7 wt.%was designed via alloying with a small amount of Al,and the microstructure and mechanical properties of the steel,subjected to intercritical annealing(IA)at 745°C for different times followed by oil quenching,were investigated.Results show that the volume fraction of RA increases first and then decreases with IA time,with the maximum of 0.36 obtained at IA time of 50 min.It is demonstrated that Al addition slows down the in-terface migration and growth kinetics of reverted austenite via retarding C diffusion in ferrite during IA,which,hence,decreases the amount and size of the reverted austenite and partitions more C and Mn into it.This suggests that Al plays a favorable role in enhancing the thermal stability of reverted austenite and increasing the amount of austenite retained at room temperature.Due to the presence of large amounts of RA and the strong transformation-induced plasticity effect generated during plastic deformation,the steel exhibits persistent high strain hardening and superior mechanical properties,comparable to those of reported medium-Mn steels containing higher Mn content.The present result offers a new insight into the role of Al in adjusting microstructure-property relationships and opens a promising way for designing low-cost,high performance medium-Mn steels with low Mn content for industrial applications.展开更多
Low-densityδ-quenching and partitioning(δ-QP)steels with excellent strength and ductility have been recently developed.However,there are still rare reports on the formability of δ-QP steels,which are critical for s...Low-densityδ-quenching and partitioning(δ-QP)steels with excellent strength and ductility have been recently developed.However,there are still rare reports on the formability of δ-QP steels,which are critical for satisfying the manufacture of structural parts during the application in automotive industry.In the present work,an 1180 MPa Fe–Mn–Al–C–Nbδ-QP steel with a high ductility was adopted for the stretch–flangeability study.Theδ-QP steel was developed by separated quenching and partitioning processes.A good hole expansion ratio(HER)of 34.9±0.9%was obtained in the quenched steel,but it has been further increased to 52.2%by the tempering treatment.The improved stretch–flangeability was attributed to the enhanced austenite stability and deformation uniformity.On the one hand,the stability of austenite was increased by carbon partitioning during tempering,which reduced crack possibility via the suppression of the fresh martensite formation.On the other hand,the tempering treatment released the internal stress caused by martensitic transformation and reduced the difference in strength among different phases,resulting in an increase in the resistance to crack initiation and propagation.展开更多
The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The incr...The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The increase of warm rolling temperature from 250℃ to 600℃ leads to enhanced recrystallization in martensite during the intercritical annealing(IA) at 620℃ for 5 h.As a result,both ultimate tensile strength(UTS) and total elongation(TE) increase.However,the size of relatively coarse recrystallized austenite grains and the resultant yield strength(YS) remain almost constant in this temperature range.The further increase of rolling temperature to 700-800℃ causes a considerable amount of pearlite to be formed during the IA,and then martensite is formed after the IA,resulting in dramatical increases in both YS and UTS but at the great loss of ductility.The warm rolling at 600℃ with 63% thickness reduction can produce the steel with the best mechanical combination of 1.2 GPa UTS and 35% TE,due to the formation of many ultrafine austenite grains and strain-induced cementite precipitates.This demonstrates that the mechanical combination of non-V-alloyed medium Mn steel can be improved to an equivalent level of 0.7% V alloyed 10 Mn steel just via the economic strain-induced cementite precipitation.展开更多
The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperature...The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperatures to produce an ultra-fine heterogeneous microstructure with lath-shaped and granular-shaped retained austenite.Excellent mechanical behavior of significant strength enhancement with negligible ductility loss can be achieved.The high strength-ductility properties are attributed to the active transformation induced plasticity effect over a broad strain range owing to dispersive mechanical stabilities of the heterogeneous austenite.Furthermore,the typical yield point elongation phenomenon which is commonly observed in cold-rolled MMSs can be effectively reduced by this microstructural strategy.展开更多
Microstructures and mechanical properties of Ti-V micro-alloyed TRIP( transformation-induced plasticity) steel with different compositions were investigated by tensile test,scanning electron microscopy( SEM),trans...Microstructures and mechanical properties of Ti-V micro-alloyed TRIP( transformation-induced plasticity) steel with different compositions were investigated by tensile test,scanning electron microscopy( SEM),transmission electron microscopy( TEM),X-ray diffraction( XRD) and thermodynamic calculation( TC). The results indicated that the steel exhibited high ultimate tensile strength( 1 079MPa),sufficient ductility( 28%) and the highest product of strength and ductility( 30 212 MPa·%) heat treated after intercritical annealing at 800℃ for 3 min and bainitic annealing at 430 ℃ for 5 min. In addition,the change of volume fraction of retained austenite( VF-RA) versus tensile strain was measured using in-situ analysis by X-ray stress apparatus and micro-electronic universal testing machine. It was concluded that a-value could be used to evaluate the stability of retained austenite( S-RA) in the investigated Ti-V micro-alloyed TRIP steel. The smaller a-value indicated the higher stability of retained austenite( S-RA) and the higher mechanical properties of Ti-V micro-alloyed TRIP steel.展开更多
Silicon is an essential alloying element in quenching and partitioning(Q&P)steels,because it is known to suppress carbide precipitation during partitioning step and promote carbon partitioning to stabilize austeni...Silicon is an essential alloying element in quenching and partitioning(Q&P)steels,because it is known to suppress carbide precipitation during partitioning step and promote carbon partitioning to stabilize austenite.When 2 wt%Si was added to 10Mn-2Al-0.2C steel,the size and fraction of the carbides formed during partitioning became smaller than in the Si-free counterpart.Moreover,the suppression of carbide formation promoted C partitioning into austenite as expected.However,austenite stability was always lower with Si under the equivalent partitioning condition because Si effectively decreased the stacking fault energy of austenite.As partitioning progressed,the both yield and tensile strengths of the Si-added steel exceeded that of the Si-free steel with the similar ductility level.This was because Si was an effective solid solution strengthener,and the austenite in the Si-added steel exhibited the appropriate stability to gradually transform into martensite throughout the deformation.The resulting strengthening effect compensated for the softening caused by martensite recovery.Consequently,strain hardening rate decreased continuously throughout deformation,which resulted in high tensile strength and ductility.展开更多
文摘The effect of carbide solvation on the γ/γ+δ boundary temperature Tδ and the equilibrium relationship between the alloying elements at the γ/γy +δ boundary in austenitic steels at high temperature have been studied, and the variation of the ferrite volume fraction with temperature in α+ γ dual phase steel has been investigated. The relative expressions are derived from many experimental results, which provides a basis for quantitative calculation, composition design, determination of the working processes,and prediction of the mechanical properties and the structure of the austenitic steels.
文摘The relationship between the γ/(γ+δ) boundary temperature Tδ of austenitic steels and the equivalent weights of [Crl and [Ni] and the variation rule of the δ phase volume with the temperature are studied With the aid of computer,the regressives expression derived from the experimental results are Tδ(℃) = T4 -21.2[Cr] +15.8[Ni]-223. Vδ(%)=0.715 exp 0.015(T-Tδ).
基金Z.G.Yang acknowledges financial support from the National Key R&D program of China(grant No.2022YFB3705200)National Natural Science Foundation of China(grant No.52171008)+2 种基金H.Chen acknowledges financial support from the National Natural Science Foundation of China(grant No.51922054)Tsinghua University Initiative Scientific Research Program(No.20233080002)the Mobility Programme from the Sino-German Center(Grant No.M-0319).
文摘Nanoprecipitates and nanoscale retained austenite(RA)with suitable stability play crucial roles in deter-mining the yield strength(YS)and ductility of ultrahigh strength steels(UHSSs).However,owing to the kinetics incompatibility between nanoprecipitation and austenite reversion,it is highly challenging to si-multaneously introduce high-density nanoprecipitates and optimized RA in UHSSs.In this work,through the combination of austenite reversion treatment(ART)and subsequent flash austenitizing(FA),nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process.This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase.The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn)and(Mo,Cr)_(2)C and nanoscale austenite stabilized via Mn and Ni enrichment.The hard martensitic matrix strengthened by high-density dual-nanoprecipitates con-strains the plastic deformation of soft RA with a relatively low fraction of-15%,and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity(TRIP)effect.As a result,the newly-developed UHSS exhibits an ultrahigh YS of-1.7 GPa,an ultimate tensile strength(UTS)of-1.8 GPa,a large uniform elongation(UE)of-8.5%,and a total elongation(TE)of-13%.The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.
文摘The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.
基金the National Natural Science Foundation of China(No.50401003)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)of China(No.200335)+1 种基金the Natural Science Foundation of Tianjin City(No.033608811)the Fok Ying Tong Education Foundation,and the Program for New Century Excellent Talents in University for grant and financial support.
文摘The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(52071238)Leading Innovation and Entrepreneurship Team in Zhejiang Province(2021R01020)+2 种基金the Key Research and Development Program of Hubei Province(2021BAA057)Science and Technology Program of Guangxi Province(AA22068080)the 111 Project.
文摘The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.
基金Y.G.Yang,H.T.Jiang,M.Wang,Z.L.Mi,and X.P.Mao gratefully acknowledge the support of the National Key Research and Development Program of China(2017YFB0304404 and 2016YFB0101605)the Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(2019ZX04002030)+1 种基金China Scholarship Council(CSC)Swedish Foundation for International Cooperation in Research and Higher Education(STINT,No.PT2017-7330&IB2020-8781)for the financial support.X.Q.Li would like to acknowledge the Swedish Research Council.
文摘The austenite stability and the mechanical properties in a typical medium Mn grade steel,i.e.,5Mn steel,were investigated under a wide range of strain rates through the combination of experimental and theoretical methodologies.The obtained results indicate that austenite is more stable at a high strain rate,which is due to the suppression of the austenite to martensite transformation.This suppression is attributed to the increased stacking fault energy and the high deformation energy barrier.Moreover,the suppression of martensitic transformation also leads to the decrease in the ultimate tensile strength and the uniform elongation.Owing to the increase in an adiabatic heating temperature,an increase in the uniform elongation is acquired at a high strain rate.The obtained fundamental study results shed light on a wide application of the medium Mn steel under different strain rate conditions.
基金financial support of the State Key Research and Development Program of China(Grant No.2017YFB0304404)
文摘Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.
基金financially supported by National Basic Research Programs of China (No.2015CB654802 and No.2015GB118001)National Natural Science Foundation of China(Grant No.51471094)
文摘Three kinds of high Co Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr's circle methods, respectively. Simulation and mechanical test results showed that The decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in y phase would be lower than 20 wt.%. And the simulation value of M; (stress induced critical martensite transformation temperature) would be up to 80 ℃, which was about 60℃ higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.
基金financially supported by the National Natural Science Foundation of China(Nos.52271119 and U1760116)the I nnovation Ability Promotion Program of Hebei(No.22567609H).
文摘Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In this paper,a medium-Mn steel with Mn content as low as 2.7 wt.%was designed via alloying with a small amount of Al,and the microstructure and mechanical properties of the steel,subjected to intercritical annealing(IA)at 745°C for different times followed by oil quenching,were investigated.Results show that the volume fraction of RA increases first and then decreases with IA time,with the maximum of 0.36 obtained at IA time of 50 min.It is demonstrated that Al addition slows down the in-terface migration and growth kinetics of reverted austenite via retarding C diffusion in ferrite during IA,which,hence,decreases the amount and size of the reverted austenite and partitions more C and Mn into it.This suggests that Al plays a favorable role in enhancing the thermal stability of reverted austenite and increasing the amount of austenite retained at room temperature.Due to the presence of large amounts of RA and the strong transformation-induced plasticity effect generated during plastic deformation,the steel exhibits persistent high strain hardening and superior mechanical properties,comparable to those of reported medium-Mn steels containing higher Mn content.The present result offers a new insight into the role of Al in adjusting microstructure-property relationships and opens a promising way for designing low-cost,high performance medium-Mn steels with low Mn content for industrial applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171108 and 51804072)the Fundamental Research Funds for the Central University(Grant Nos.N2202007 and N2202011)Special thanks are also due to the instrumental or data analysis from Analytical and Testing Center,Northeastern University,China.
文摘Low-densityδ-quenching and partitioning(δ-QP)steels with excellent strength and ductility have been recently developed.However,there are still rare reports on the formability of δ-QP steels,which are critical for satisfying the manufacture of structural parts during the application in automotive industry.In the present work,an 1180 MPa Fe–Mn–Al–C–Nbδ-QP steel with a high ductility was adopted for the stretch–flangeability study.Theδ-QP steel was developed by separated quenching and partitioning processes.A good hole expansion ratio(HER)of 34.9±0.9%was obtained in the quenched steel,but it has been further increased to 52.2%by the tempering treatment.The improved stretch–flangeability was attributed to the enhanced austenite stability and deformation uniformity.On the one hand,the stability of austenite was increased by carbon partitioning during tempering,which reduced crack possibility via the suppression of the fresh martensite formation.On the other hand,the tempering treatment released the internal stress caused by martensitic transformation and reduced the difference in strength among different phases,resulting in an increase in the resistance to crack initiation and propagation.
基金the financial support from National Natural Science Foundation of China(Nos.51861135302 and51831002)the Young Elite Scientists Sponsorship Program by China Association of Science and Technology(No.2018QNRC001)+2 种基金the Fundamental Research Funds for the Central Universities(No.06102146)the Postdoctoral Science Foundation of China(No.2018M640063)the National Natural Science Foundation(No.51904028)。
文摘The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The increase of warm rolling temperature from 250℃ to 600℃ leads to enhanced recrystallization in martensite during the intercritical annealing(IA) at 620℃ for 5 h.As a result,both ultimate tensile strength(UTS) and total elongation(TE) increase.However,the size of relatively coarse recrystallized austenite grains and the resultant yield strength(YS) remain almost constant in this temperature range.The further increase of rolling temperature to 700-800℃ causes a considerable amount of pearlite to be formed during the IA,and then martensite is formed after the IA,resulting in dramatical increases in both YS and UTS but at the great loss of ductility.The warm rolling at 600℃ with 63% thickness reduction can produce the steel with the best mechanical combination of 1.2 GPa UTS and 35% TE,due to the formation of many ultrafine austenite grains and strain-induced cementite precipitates.This demonstrates that the mechanical combination of non-V-alloyed medium Mn steel can be improved to an equivalent level of 0.7% V alloyed 10 Mn steel just via the economic strain-induced cementite precipitation.
基金financially supported by the National Natural Science Foundation of China(Nos.52071322 and 51771192).
文摘The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperatures to produce an ultra-fine heterogeneous microstructure with lath-shaped and granular-shaped retained austenite.Excellent mechanical behavior of significant strength enhancement with negligible ductility loss can be achieved.The high strength-ductility properties are attributed to the active transformation induced plasticity effect over a broad strain range owing to dispersive mechanical stabilities of the heterogeneous austenite.Furthermore,the typical yield point elongation phenomenon which is commonly observed in cold-rolled MMSs can be effectively reduced by this microstructural strategy.
基金supported by the Shanghai Municipal Science and Technology Commission(Grant No.15DZ2260300,15DZ2260301)Shanghai Municipal Natural Science Foundation(17ZR1410400)
文摘Microstructures and mechanical properties of Ti-V micro-alloyed TRIP( transformation-induced plasticity) steel with different compositions were investigated by tensile test,scanning electron microscopy( SEM),transmission electron microscopy( TEM),X-ray diffraction( XRD) and thermodynamic calculation( TC). The results indicated that the steel exhibited high ultimate tensile strength( 1 079MPa),sufficient ductility( 28%) and the highest product of strength and ductility( 30 212 MPa·%) heat treated after intercritical annealing at 800℃ for 3 min and bainitic annealing at 430 ℃ for 5 min. In addition,the change of volume fraction of retained austenite( VF-RA) versus tensile strain was measured using in-situ analysis by X-ray stress apparatus and micro-electronic universal testing machine. It was concluded that a-value could be used to evaluate the stability of retained austenite( S-RA) in the investigated Ti-V micro-alloyed TRIP steel. The smaller a-value indicated the higher stability of retained austenite( S-RA) and the higher mechanical properties of Ti-V micro-alloyed TRIP steel.
基金POSCO(Pohang,Republic of Korea)for the financial supportsupported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2019R1I1A3A0106262212).
文摘Silicon is an essential alloying element in quenching and partitioning(Q&P)steels,because it is known to suppress carbide precipitation during partitioning step and promote carbon partitioning to stabilize austenite.When 2 wt%Si was added to 10Mn-2Al-0.2C steel,the size and fraction of the carbides formed during partitioning became smaller than in the Si-free counterpart.Moreover,the suppression of carbide formation promoted C partitioning into austenite as expected.However,austenite stability was always lower with Si under the equivalent partitioning condition because Si effectively decreased the stacking fault energy of austenite.As partitioning progressed,the both yield and tensile strengths of the Si-added steel exceeded that of the Si-free steel with the similar ductility level.This was because Si was an effective solid solution strengthener,and the austenite in the Si-added steel exhibited the appropriate stability to gradually transform into martensite throughout the deformation.The resulting strengthening effect compensated for the softening caused by martensite recovery.Consequently,strain hardening rate decreased continuously throughout deformation,which resulted in high tensile strength and ductility.