Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some fai...Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some failures of the weld joints, mainly stress corrosion cracking (SCC), have been found to be located in the HAZ. In this research, the microstructure, micro-hardness, residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied. However, traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal, higher residual strain and micro-hardness, and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test. What's more, the residual strain, the microhardness and the fraction of random grain boundaries decreased, while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ. Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal. It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ.展开更多
使用镍基焊缝连接铁素体基耐热钢和奥氏体不锈钢(或镍基合金)形成的异种金属焊接接头(DMWs,Dissimilar Metal Welds)在核电、火电、石化等行业有着广泛的应用。DMWs在高温低应力服役条件下经常会出现早期失效,导致机组非正常停机,带来...使用镍基焊缝连接铁素体基耐热钢和奥氏体不锈钢(或镍基合金)形成的异种金属焊接接头(DMWs,Dissimilar Metal Welds)在核电、火电、石化等行业有着广泛的应用。DMWs在高温低应力服役条件下经常会出现早期失效,导致机组非正常停机,带来巨大的经济损失和安全隐患,故DMWs的早期失效问题一直受到工程界和学术界的重点关注。围绕DMWs的早期失效问题,回顾并总结了近几十年来该领域的相关研究成果。首先,介绍了DMWs的组织特点,重点关注了铁素体基耐热钢与焊缝界面附近区域的冶金特点,包括界面马氏体层、碳迁移、Ⅰ/Ⅱ型碳化物等;其次,简要总结了DMWs焊接残余应力的特点及其影响因素;再次,汇总了DMWs的高温蠕变数据,针对DMWs蠕变断裂位置转移的特点进行了分析,其中沿铁素体基耐热钢与焊缝界面断裂是DMWs失效的显著特征,这种失效方式与界面处应变集中、热应力、基体组织退化、碳化物粗化以及氧化等有关;最后,给出了若干种延长DMWs服役寿命的方法和建议。展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51301183)Science and Technology Commission of Shanghai Municipality under Grant No. 14DZ2250300, Shanghai, China
文摘Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some failures of the weld joints, mainly stress corrosion cracking (SCC), have been found to be located in the HAZ. In this research, the microstructure, micro-hardness, residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied. However, traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal, higher residual strain and micro-hardness, and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test. What's more, the residual strain, the microhardness and the fraction of random grain boundaries decreased, while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ. Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal. It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ.
文摘使用镍基焊缝连接铁素体基耐热钢和奥氏体不锈钢(或镍基合金)形成的异种金属焊接接头(DMWs,Dissimilar Metal Welds)在核电、火电、石化等行业有着广泛的应用。DMWs在高温低应力服役条件下经常会出现早期失效,导致机组非正常停机,带来巨大的经济损失和安全隐患,故DMWs的早期失效问题一直受到工程界和学术界的重点关注。围绕DMWs的早期失效问题,回顾并总结了近几十年来该领域的相关研究成果。首先,介绍了DMWs的组织特点,重点关注了铁素体基耐热钢与焊缝界面附近区域的冶金特点,包括界面马氏体层、碳迁移、Ⅰ/Ⅱ型碳化物等;其次,简要总结了DMWs焊接残余应力的特点及其影响因素;再次,汇总了DMWs的高温蠕变数据,针对DMWs蠕变断裂位置转移的特点进行了分析,其中沿铁素体基耐热钢与焊缝界面断裂是DMWs失效的显著特征,这种失效方式与界面处应变集中、热应力、基体组织退化、碳化物粗化以及氧化等有关;最后,给出了若干种延长DMWs服役寿命的方法和建议。