BIG models or foundation models are rapidly emerging as a key force in advancing intelligent societies[1]–[3]Their significance stems not only from their exceptional ability to process complex data and simulate advan...BIG models or foundation models are rapidly emerging as a key force in advancing intelligent societies[1]–[3]Their significance stems not only from their exceptional ability to process complex data and simulate advanced cognitive functions,but also from their potential to drive innovation across various industries.展开更多
In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological ...In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.展开更多
On 14th September 2023,we were gathered in a Beijing conference hall to exchange views with the leaders of the Chinese Association for International Understanding.We had been introduced about the Association by resear...On 14th September 2023,we were gathered in a Beijing conference hall to exchange views with the leaders of the Chinese Association for International Understanding.We had been introduced about the Association by researcher Zhang Yaowu during our field trips.However,when we met Ai Ping,I had no idea that we were talking with the author of"A Tale of Two Continents:An Autobiography".In receiving his signed book,I realized that the speaker was the current Vice-President of the Chinese Association for International Understanding and a Deputy Minister and an Ambassador Extraordinary and Plenipotentiary of China to Ethiopia.展开更多
Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extr...Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.展开更多
Background: Condyloma acuminatum (CA), also known as a genital wart (GW), is a sexually transmitted disease caused by human papillomavirus (HPV). HPV lesions, recurrence tendency, and risk of malignant formation are p...Background: Condyloma acuminatum (CA), also known as a genital wart (GW), is a sexually transmitted disease caused by human papillomavirus (HPV). HPV lesions, recurrence tendency, and risk of malignant formation are primarily dependent on the person’s immunity level. GW recurrence is a major challenge in CA treatment. The aim of this study was to explore how lesional auto-transplantation (LT) can be used to treat CA and decrease its recurrence. Methods: We treated CA through the preparation and implantation of tissue from nine CA patients in our dermatology clinic. Transplantation of small pieces of HPV lesions to the subcutaneous fat of the inguinal region was carried out with the help of a simple surgical method under local anesthesia. Patients were followed up for six to eight months. We searched PubMed and the Web of Science for treatment options for CA to compare our treatment method recurrence rate with existing treatment options. Results: During three months of follow-up, seven patients experienced no recurrence of condyloma lesions, while two patients experienced recurrence of small lesions of condyloma acuminatum. The recurrence rate of CA once treated by auto-transplantation was relatively low compared to other CA treatment options. Conclusions: Transplantation of HPV lesions to the inguinal area reduces the recurrence rate in sexually active individuals. The 2/9 recurrence after implantation could be due to poor hygiene, sexual relationships or immune factors.展开更多
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)...The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.展开更多
基金the National Natural Science Foundation of China(62103411)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘BIG models or foundation models are rapidly emerging as a key force in advancing intelligent societies[1]–[3]Their significance stems not only from their exceptional ability to process complex data and simulate advanced cognitive functions,but also from their potential to drive innovation across various industries.
文摘In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.
文摘On 14th September 2023,we were gathered in a Beijing conference hall to exchange views with the leaders of the Chinese Association for International Understanding.We had been introduced about the Association by researcher Zhang Yaowu during our field trips.However,when we met Ai Ping,I had no idea that we were talking with the author of"A Tale of Two Continents:An Autobiography".In receiving his signed book,I realized that the speaker was the current Vice-President of the Chinese Association for International Understanding and a Deputy Minister and an Ambassador Extraordinary and Plenipotentiary of China to Ethiopia.
文摘Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.
文摘Background: Condyloma acuminatum (CA), also known as a genital wart (GW), is a sexually transmitted disease caused by human papillomavirus (HPV). HPV lesions, recurrence tendency, and risk of malignant formation are primarily dependent on the person’s immunity level. GW recurrence is a major challenge in CA treatment. The aim of this study was to explore how lesional auto-transplantation (LT) can be used to treat CA and decrease its recurrence. Methods: We treated CA through the preparation and implantation of tissue from nine CA patients in our dermatology clinic. Transplantation of small pieces of HPV lesions to the subcutaneous fat of the inguinal region was carried out with the help of a simple surgical method under local anesthesia. Patients were followed up for six to eight months. We searched PubMed and the Web of Science for treatment options for CA to compare our treatment method recurrence rate with existing treatment options. Results: During three months of follow-up, seven patients experienced no recurrence of condyloma lesions, while two patients experienced recurrence of small lesions of condyloma acuminatum. The recurrence rate of CA once treated by auto-transplantation was relatively low compared to other CA treatment options. Conclusions: Transplantation of HPV lesions to the inguinal area reduces the recurrence rate in sexually active individuals. The 2/9 recurrence after implantation could be due to poor hygiene, sexual relationships or immune factors.
基金supported by financial support from Universiti Sains Malaysia(USM)under FRGS Grant Number FRGS/1/2020/TK03/USM/02/1the School of Computer Sciences USM for their support.
文摘The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.