期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex 被引量:2
1
作者 Madhavi Latha Challa Venkataramanaiah Malepati Siva Nageswara Rao Kolusu 《Financial Innovation》 2018年第1期344-360,共17页
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip... The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies. 展开更多
关键词 Akaike Information Criteria(AIC) Bombay Stock Exchange(BSE) auto regressive Integrated moving average(ARIMA) Beta Time series
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
2
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
CONSTRUCTION OF POLYNOMIAL MATRIX USING BLOCK COEFFICIENT MATRIX REPRESENTATION AUTO-REGRESSIVE MOVING AVERAGE MODEL FOR ACTIVELY CONTROLLED STRUCTURES 被引量:1
3
作者 李春祥 周岱 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期661-667,共7页
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF... The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation. 展开更多
关键词 actively controlled MDOF structures stationary stochastic processes polynomial matrix auto-regressive moving average
下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
4
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and moving-average (ARMA) modeling probability distributions extreme wind speeds
下载PDF
基于水电储能调节的风光水发电联合优化调度策略
5
作者 何奇 张宇 +4 位作者 邓玲 王海亮 谢琼瑶 王春 胡家旗 《广东电力》 北大核心 2024年第3期12-24,共13页
为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;... 为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;提出基于季节性自回归移动平均(seasonal auto-regressive lntegrated moving average, SARIMA)模型和Copula函数的风光出力预测模型作为优化调度模型的边界条件,通过SARIMA预测模型将风光出力历史数据分解为季节性分量、趋势分量以及随机噪声余项进行全天96个调度时段风光出力预测,并叠加上基于Copula函数生成风光出力预测误差,然后通过拉丁超立方采样以及K-means聚类进行场景生成和缩减得到5个风光出力场景。选取风光典型日出力数据为例进行算例分析,算例结果表明:所提预测模型较SARIMA模型可以显著提高预测准确度,模型预测风光出力均方根误差从33.34、229.49 MW分别下降至0.697、9.534 MW;所提优化调度策略可以在全年丰、平、枯水期有效减少弃风弃光现象,并可将过剩新能源中的50%转化为上级水库储存水能。 展开更多
关键词 风光出力预测 季节性自回归移动平均模型 COPULA函数 风光水储系统 负荷跟踪
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
6
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
下载PDF
基于SARIMA‑LSTM模型的航空旅客运输市场需求分析与预测
7
作者 田勇 董斌 +3 位作者 于楠 孙梦圆 李千千 郭梁 《指挥信息系统与技术》 2024年第5期1-8,共8页
市场需求预测是航空公司开展生产活动的前提,科学合理的预测结果能为航空公司降低成本、提高效益。首先,选取影响航空旅客运输市场需求的因素,并对其进行相关性分析;其次,采用季节性差分自回归移动平均(SARIMA)模型和长短期记忆(LSTM)... 市场需求预测是航空公司开展生产活动的前提,科学合理的预测结果能为航空公司降低成本、提高效益。首先,选取影响航空旅客运输市场需求的因素,并对其进行相关性分析;其次,采用季节性差分自回归移动平均(SARIMA)模型和长短期记忆(LSTM)网络模型,对航空旅客运输市场需求量进行特征分析,构建了基于SARIMA模型、LSTM网络模型的组合预测(SARIMA⁃LSTM)模型,提高市场需求时间序列预测的精度;最后,以北京市航空运输市场为例,分析结果显示,SARIMA⁃LSTM组合模型的预测准确性高于单一模型,对于市场需求的预测准确率较高。 展开更多
关键词 季节性差分自回归移动平均(SARIMA)模型 长短期记忆(LSTM)网络模型 SARIMA⁃LSTM组合模型 需求预测
下载PDF
基于ARIMA-IPOA-CNN-LSTM的太湖水体溶解氧浓度预测模型
8
作者 杨焕峥 崔业梅 +1 位作者 徐玲 薛洪惠 《水电能源科学》 北大核心 2024年第10期55-59,共5页
为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)... 为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)模型,分别从数据中学习空间和时间特征;再次,提出了一种改进的鹈鹕优化算法(IPOA)来优化模型参数,算法增加了Logistic混沌映射种群初始化、反向差分进化、萤火虫扰动的方法,CEC2005函数的测试结果显著优于传统鹈鹕优化算法;最后,将“剪枝”模型部署于STM32嵌入式设备。试验结果表明,在溶解氧浓度预测方面,该模型具有高的准确性和鲁棒性,为水环境保护提供了一种高效、可靠的解决方案。 展开更多
关键词 差分自回归移动平均 鹈鹕优化算法 卷积神经网络 水体 溶解氧浓度
下载PDF
基于ARIMA模型的南昌市结核病流行趋势预测分析
9
作者 周坤 朱晓琳 +2 位作者 熊文艳 付军 杨树 《中国初级卫生保健》 2024年第8期59-61,共3页
目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—202... 目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—2022年12月31日,现住址为南昌市的肺结核报告发病数据,应用SPSS 25.0软件构建基于南昌市肺结核发病数的自回归移动平均模型,对南昌市肺结核疫情的流行趋势进行分析和预测。结果:2012—2022年南昌市共报告新发肺结核病例44049例,总体呈逐年下降趋势。确定最优预测模型为ARIMA(0,1,4)(0,1,2)12,对2023年1—8月肺结核发病数进行预测并与实际值比较分析的结果显示,预测较好。结论:自回归移动平均模型对肺结核疫情预测效果良好,可以作为肺结核疫情短期预测的工具。 展开更多
关键词 自回归移动平均模型 肺结核 预测
下载PDF
基于SARIMA模型的近岸海表温度短期预报研究 被引量:1
10
作者 赵强 王擎宇 舒志光 《海洋预报》 CSCD 北大核心 2024年第1期42-49,共8页
基于石浦海洋站实测数据,采用周期性自回归积分滑动平均方法(SARIMA)构建了逐时海表温度短期预报模型,根据观测数据的周期特征和模型预报误差比选确定了模型参数。结果表明:与采用逐时观测数据作为输入的模型相比,采用逐0.5 h内插数据... 基于石浦海洋站实测数据,采用周期性自回归积分滑动平均方法(SARIMA)构建了逐时海表温度短期预报模型,根据观测数据的周期特征和模型预报误差比选确定了模型参数。结果表明:与采用逐时观测数据作为输入的模型相比,采用逐0.5 h内插数据构建的SARIMA模型的预报结果与实测数据间的相位更为一致,预报误差更小,但进一步将输入数据的时间分辨率提高,72 h逐时预报精度提升不明显;研究还发现模型预报误差总体随输入数据时长的减小而增大;采用366 d逐0.5 h数据构建的SARIMA(2,0,2)(2,1,0)25模型的预报结果较优,0~24 h、24~48 h、48~72 h预报的平均绝对误差分别为0.176℃、0.350℃、0.520℃,相应的均方根误差分别为0.217℃、0.396℃、0.567℃。 展开更多
关键词 周期性自回归积分滑动平均方法 统计预报 海表温度 预报
下载PDF
复杂天气条件下光伏电站太阳辐射量短期预测
11
作者 宋晓通 卢艺玮 +1 位作者 师芊芊 梅杨 《科学技术与工程》 北大核心 2024年第30期12985-12995,共11页
复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-... 复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-based fuzzy inference systems,ANFIS)的太阳辐射量预测模型。该模型引入了卫星遥感数据作为输入量,以补充传统的气象数据。首先,使用样本熵计算法对复杂天气进行判定;其次,采用自回归移动平均(auto regression integrated moving average,ARIMA)模型,预测未来24 h的云团光学厚度和气溶胶光学厚度这两种关键的卫星遥感数据。结合大气层上界的太阳辐射量和大气平均温度,建立了基于ANFIS的太阳能辐射量预测模型,从而得到未来24 h的太阳能辐射量预测结果。在算例研究中,将ANFIS模型与多层前馈(back propagation,BP)神经网络预测模型、长短期记忆(long short-term memory,LSTM)神经网络预测模型在不同天气类型中的精度进行了对比。结果表明,在简单天气条件下,ANFIS模型、BP模型、LSTM模型的均方根误差分别为0.1122、0.3184、0.2534 W/m^(2),三者相对较小且相差不大;在复杂天气条件中,ANFIS模型的均方根误差为0.8606 W/m^(2),比BP模型和LSTM模型分别降低了4.0396、2.0252 W/m^(2),这说明ANFIS模型在复杂天气条件下表现较好,能够适应具有较强波动性的数据。研究同时表明,在考虑气象数据的基础上计及卫星遥感数据,可将预测的均方根误差降低0.132 W/m^(2),进一步改进了预测精度。 展开更多
关键词 复杂天气 太阳辐射量预测 气象卫星数据 自适应模糊神经网络 自回归移动平均模型
下载PDF
基于自回归推广模型的海风预测方法分析
12
作者 张超群 张帆 +1 位作者 罗伟强 周磊 《上海船舶运输科学研究所学报》 2024年第5期16-21,共6页
为准确预测海上风速和风向数据,提升船舶海上航行的安全性,针对现有海风预测方法存在的预测精度不高的问题,提出一种基于自回归(Auto-Regressive,AR)推广模型的海风预测方法。将风速和风向看作风矢量的2部分,在确定2组数据的依赖性之后... 为准确预测海上风速和风向数据,提升船舶海上航行的安全性,针对现有海风预测方法存在的预测精度不高的问题,提出一种基于自回归(Auto-Regressive,AR)推广模型的海风预测方法。将风速和风向看作风矢量的2部分,在确定2组数据的依赖性之后,分别采用差分整合移动平均自回归(Auto-Regressive Integrated Moving Average,ARIMA)模型和向量自回归(Vector Auto-Regressive,VAR)模型这2种AR推广模型对风矢量进行预测。试验结果表明,VAR模型的预测结果中有34.17%的数据落在误差允许范围内,而ARIMA模型的预测结果中有61.25%的数据落在误差允许范围内,该方法可供海上风速和风向预测参考。 展开更多
关键词 风向风速预测 差分整合移动平均自回归(ARIMA)模型 向量自回归(VAR)模型
下载PDF
基于LSTM预测模型的应用性能异常检测
13
作者 朱林青 张涛 +1 位作者 吕灼恒 孙建鹏 《计算机仿真》 2024年第5期536-542,共7页
目前高性能计算系统规模和复杂性不断增加,应用软件作业性能异常的原因变得更加复杂多样,传统的针对基于监控数据进行人工分析的方法存在效率低下和过分依赖分析人员经验的问题。提出一种基于长短期记忆网络(LSTM)的性能异常检测方法。... 目前高性能计算系统规模和复杂性不断增加,应用软件作业性能异常的原因变得更加复杂多样,传统的针对基于监控数据进行人工分析的方法存在效率低下和过分依赖分析人员经验的问题。提出一种基于长短期记忆网络(LSTM)的性能异常检测方法。以天气预报模式WRF为研究对象,首先从历史作业数据中学习出正常性能数据的变化情况,然后通过引入boxplot方法对LSTM模型预测值与实际观测值之间的残差进行统计分析,并将大于下四分位的数据判定为异常,从而实现应用软件作业性能异常的检测。实验结果表明,上述方法不仅可以较好地检测出性能的异常,而且能适用于多种不同类型的数据集。 展开更多
关键词 应用软件作业性能异常检测 长短期记忆网络 自回归移动平均模型 天气预报模式
下载PDF
基于ARIMAX的风电功率预测研究
14
作者 鄂立顺 于宏涛 +1 位作者 李昂 张师 《电气开关》 2024年第2期77-79,共3页
一次能源的波动特性给电网带来了许多麻烦,使得大量的风电、光伏都不能被充分利用,风电功率预测技术作为有效应对风电接入的关键技术之一,对指导系统调度运行、风电场生产安排具有十分重大的意义。基于ARIMAX建立了风电功率预测模型,并... 一次能源的波动特性给电网带来了许多麻烦,使得大量的风电、光伏都不能被充分利用,风电功率预测技术作为有效应对风电接入的关键技术之一,对指导系统调度运行、风电场生产安排具有十分重大的意义。基于ARIMAX建立了风电功率预测模型,并采用实测数据对模型有效性进行验证。研究结果表明,将风速作为外因变量,利用历史风电功率数据可以对未来短时风电功率进行较为准确的预测。 展开更多
关键词 风电功率 自回归移动平均模型 风速 预测
下载PDF
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
15
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(ARIMA)模型
下载PDF
一种带控制端的二次校正滤波器
16
作者 李恒 《曲阜师范大学学报(自然科学版)》 CAS 2024年第3期73-80,共8页
提出了一种带控制端的二次校正滤波器,可在系统稳定和不稳定情况下实现自校正滤波.对于稳定系统,将其转化为自回归滑动平均(ARMA)模型进行自校正滤波;对于由于参数问题导致的不稳定系统,关键参数可分解为限定范围的游离参数1和固定或缓... 提出了一种带控制端的二次校正滤波器,可在系统稳定和不稳定情况下实现自校正滤波.对于稳定系统,将其转化为自回归滑动平均(ARMA)模型进行自校正滤波;对于由于参数问题导致的不稳定系统,关键参数可分解为限定范围的游离参数1和固定或缓慢变化的游离参数2之和,即将系统转化为游离参数1作用下的稳定系统和可通过控制端进行二次校正的系统的组合.通过设定控制准则,将状态值和控制端联系起来,利用相关函数法估计控制端的控制系数,并将控制端二次校正值反馈至稳态滤波器(或预报器)中,实现一定范围内较稳定的自校正滤波.通过一个仿真例子验证了该方法的有效性. 展开更多
关键词 控制端 二次校正 滤波 自回归滑动平均模型 游离参数 相关函数法
下载PDF
基于奇异谱分析的旅客运输量预测研究
17
作者 方成 杨正儒 +1 位作者 任建宝 谭莹莹 《科技和产业》 2024年第3期140-145,共6页
对旅客运输量进行科学准确地预测,可以为交通领域相关部门提供有效的借鉴。将旅客运输量作为研究对象,基于SSA(奇异谱分析),结合LSTM(长短时记忆神经网络)和ARMA(自回归移动平均模型),通过SSA降噪处理,将旅客运输量时间序列分解为信号... 对旅客运输量进行科学准确地预测,可以为交通领域相关部门提供有效的借鉴。将旅客运输量作为研究对象,基于SSA(奇异谱分析),结合LSTM(长短时记忆神经网络)和ARMA(自回归移动平均模型),通过SSA降噪处理,将旅客运输量时间序列分解为信号序列和噪声序列,分别对其进行LSTM和ARMA(2,3)建模,预测其变化趋势。通过对比单一的ARIMA(3,1,2)模型和LSTM模型的实验结果表明,SSA-LSTM-ARMA预测旅客运输量效果更好,预测精度更高。 展开更多
关键词 旅客运输量 奇异谱分析 LSTM(长短时记忆神经网络) ARMA(自回归移动平均模型)
下载PDF
基于SARIMA‑LSTM组合的机场起降量短时预测方法
18
作者 杨慧云 李印凤 +1 位作者 段满珍 阮昌 《指挥信息系统与技术》 2024年第5期29-35,共7页
机场起降量短时预测方法是根据空中交通流量管理需求,对机场未来24小时时间跨度内起降量情况进行预测。首先,构建了基于季节性差分自回归移动平均(SARIMA)和长短期记忆神经网络(LSTM)的机场起降量预测模型;然后,根据误差倒数法确定组合... 机场起降量短时预测方法是根据空中交通流量管理需求,对机场未来24小时时间跨度内起降量情况进行预测。首先,构建了基于季节性差分自回归移动平均(SARIMA)和长短期记忆神经网络(LSTM)的机场起降量预测模型;然后,根据误差倒数法确定组合预测权重以期得到更好的预测效果;最后,使用天津滨海机场进行实例验证,以机场起降量的小时数据建立了SARIMA(0,1,7)×(0,1,1)_(24)和LSTM模型,并分别以0.600和0.400的权重建立了组合预测模型。验证结果显示,组合模型的预测指标R2达到0.904,较反向传播(BP)神经网络等其他单一模型预测性能更佳。 展开更多
关键词 机场起降量 季节性差分自回归移动平均(SARIMA)模型 长短期记忆神经网络(LSTM)模型 误差倒数法
下载PDF
基于ARMA模型的隧道变形预测及参数估计分析
19
作者 刘君伟 杨晓辉 《市政技术》 2024年第7期54-60,共7页
以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模... 以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模型进行参数估计,给出了模型关键参数,构建了合理的预测模型。将模型预测结果与实测数据进行对比,显示预测结果与实测数据变化趋势高度吻合,充分验证了预测模型的可行性、有效性与稳定性。 展开更多
关键词 地铁隧道 ARMA模型 变形预测 时间序列
下载PDF
基于ARIMA-BP模型的北京市平谷区地下水水质双尺度预测 被引量:2
20
作者 秦梓萱 郭健 许模 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期121-128,共8页
选取区域尺度监测井PG-32和场地尺度监测井PG-45、PG-56中的水质指标为研究对象,采用差分自回归移动平均(ARIMA)模型对Cl-、SO42-和总溶解性固体物质(TDS)浓度进行线性预测,利用反向传播(BP)神经网络模型和等权重法组合ARIMA-BP模型对... 选取区域尺度监测井PG-32和场地尺度监测井PG-45、PG-56中的水质指标为研究对象,采用差分自回归移动平均(ARIMA)模型对Cl-、SO42-和总溶解性固体物质(TDS)浓度进行线性预测,利用反向传播(BP)神经网络模型和等权重法组合ARIMA-BP模型对监测井PG-32中的Cl-、SO42-和TDS指标浓度进行非线性预测.结果表明,线性预测方法更适用于区域尺度下的水质预测;ARIMA模型、BP神经网络模型和ARIMA-BP组合模型对PG-32中水质指标预测的平均相对误差分别为6.11%、6.17%和2.94%,验证了组合模型的优越性;ARIMA-BP模型的预测显示未来区域地下水中Cl-、SO42-浓度变化相对平稳,TDS浓度呈现上升趋势,需引起地下水预警的重视. 展开更多
关键词 地下水水质预测 差分自回归移动平均模型 反向传播神经网络模型 组合模型 双尺度
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部