期刊文献+
共找到1,027篇文章
< 1 2 52 >
每页显示 20 50 100
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
1
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and Moving-Average (arMA) modeling probability distributions extreme wind speeds
下载PDF
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
2
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
下载PDF
Short Term Load Forecasting Using Subset Threshold Auto Regressive Model
3
作者 孙海健 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期78-83,共6页
The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr... The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model. 展开更多
关键词 power load forecasting subset threshold auto regressive model
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
4
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(arIMA)
下载PDF
Auto-regressive模型在全国婴儿死亡率拟合中的应用 被引量:2
5
作者 刘松 李晓妹 +2 位作者 刘健 刘晓冬 李向云 《中国卫生统计》 CSCD 北大核心 2011年第4期366-368,共3页
目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据... 目的分析我国1991~2007年的婴儿死亡率的变化规律,探讨Auto-regressive模型在非平稳时间序列数据拟合中的适用性和有效性。方法对我国婴儿死亡率数据序列的平稳性和纯随机性进行预处理,然后利用SAS程序拟合Auto-regressive模型,并根据决定系数R2评价其拟合效果。结果我国婴儿死亡率为非平稳时间序列,总体呈现随时间线性递减的长期趋势,同时又包含一定的随机信息,采用Auto-regressive模型拟合效果较好。结论 Auto-regressive模型可以用来拟合我国婴儿死亡率的数据,并可以推广应用到卫生领域中其他具有非平稳时间序列特征的数据,为相关卫生管理部门制定策略措施提供科学的理论依据。 展开更多
关键词 auto-regressive模型 婴儿死亡率 拟合
下载PDF
基于(残差)Auto-Regressive模型利用MATLAB解决经济非平稳时间序列的预测分析 被引量:2
6
作者 曾慧 郑彩萍 王涛涛 《佳木斯大学学报(自然科学版)》 CAS 2008年第1期71-74,共4页
利用(残差)Auto—Regressive模型对我国1978年—2005年的GDP进行建模与预测,显示出该拟合模型优于ARIMA模型,并运行MATLAB软件,实现了建模仿真的全过程,显示了MATLAB的强大科学计算与可视化功能.
关键词 (残差)auto-regressive 建模 预测 程序
下载PDF
Geometric Properties of AR(q) Nonlinear Regression Models
7
作者 LIUYing-ar WEIBo-cheng 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第2期146-154,共9页
This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on th... This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3]. 展开更多
关键词 nonlinear regression model ar(q) errors geometric framework statistical curvature Fisher information matrix
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
8
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SarIMA和SVR) 组合模型 协方差优选法
下载PDF
A COMPARISON OF FORECASTING MODELS OF THE VOLATILITY IN SHENZHEN STOCK MARKET 被引量:1
9
作者 庞素琳 邓飞其 王燕鸣 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期125-136,共12页
Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters o... Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model. 展开更多
关键词 Logistic regression model ar(1) model ar(2) model VOLATILITY
下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
10
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (arMA) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
Application of deep autoencoder model for structural condition monitoring
11
作者 PATHIRAGE Chathurdara Sri Nadith LI Jun +2 位作者 LI Ling HAO Hong LIU Wanquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期873-880,共8页
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea... Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion. 展开更多
关键词 auto encoder non-linear regression deep auto en-coder model damage identification VIBRATION structural health monitoring
下载PDF
基于ARIMA模型的南昌市结核病流行趋势预测分析
12
作者 周坤 朱晓琳 +2 位作者 熊文艳 付军 杨树 《中国初级卫生保健》 2024年第8期59-61,共3页
目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—202... 目的:分析南昌市肺结核的流行趋势特征,探讨应用自回归移动平均模型对南昌市肺结核疫情流行趋势特征进行分析和预测,为相关部门制定肺结核综合防控策略提供参考依据。方法:通过中国疾病预防控制中心传染病监测系统获取2012年1月1日—2022年12月31日,现住址为南昌市的肺结核报告发病数据,应用SPSS 25.0软件构建基于南昌市肺结核发病数的自回归移动平均模型,对南昌市肺结核疫情的流行趋势进行分析和预测。结果:2012—2022年南昌市共报告新发肺结核病例44049例,总体呈逐年下降趋势。确定最优预测模型为ARIMA(0,1,4)(0,1,2)12,对2023年1—8月肺结核发病数进行预测并与实际值比较分析的结果显示,预测较好。结论:自回归移动平均模型对肺结核疫情预测效果良好,可以作为肺结核疫情短期预测的工具。 展开更多
关键词 自回归移动平均模型 肺结核 预测
下载PDF
ARMA-GM combined forewarning model for the quality control
13
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (arMA) grey system model (GM) combined forewarning model quality control.
下载PDF
基于ARIMAX的风电功率预测研究
14
作者 鄂立顺 于宏涛 +1 位作者 李昂 张师 《电气开关》 2024年第2期77-79,共3页
一次能源的波动特性给电网带来了许多麻烦,使得大量的风电、光伏都不能被充分利用,风电功率预测技术作为有效应对风电接入的关键技术之一,对指导系统调度运行、风电场生产安排具有十分重大的意义。基于ARIMAX建立了风电功率预测模型,并... 一次能源的波动特性给电网带来了许多麻烦,使得大量的风电、光伏都不能被充分利用,风电功率预测技术作为有效应对风电接入的关键技术之一,对指导系统调度运行、风电场生产安排具有十分重大的意义。基于ARIMAX建立了风电功率预测模型,并采用实测数据对模型有效性进行验证。研究结果表明,将风速作为外因变量,利用历史风电功率数据可以对未来短时风电功率进行较为准确的预测。 展开更多
关键词 风电功率 自回归移动平均模型 风速 预测
下载PDF
基于VAR-LRTC-TNN的交通流量数据补全框架模型
15
作者 孙秋霞 王淇 +2 位作者 李勍 孙璐 贾秀燕 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期47-53,86,共8页
从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据... 从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据的全局一致性,但却无法很好地捕捉数据的局部变化趋势,一定程度上影响了效果。基于此,提出了将VAR模型和基于残差序列的LRTC-TNN模型相结合的交通流补全框架模型;采用VAR模型对缺失数据进行粗略估计,移除平均趋势,利用LRTC-TNN模型对残差时间序列进行补全,再将平均趋势还原,从而完成对交通流量数据的高精度补全;该方法不仅保留了交通流数据的全局结构,还考虑了数据局部变化的特征。研究结果表明:与基于原始交通流量数据的填充方法相比,该模型框架对单传感器和多传感器数据的连续性缺失均具有更高的补全精度。 展开更多
关键词 交通工程 智能交通 交通流量填充 向量自回归模型 张量补全 缺失数据
下载PDF
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
16
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(arIMA)模型
下载PDF
基于ARMA模型的隧道变形预测及参数估计分析
17
作者 刘君伟 杨晓辉 《市政技术》 2024年第7期54-60,共7页
以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模... 以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模型进行参数估计,给出了模型关键参数,构建了合理的预测模型。将模型预测结果与实测数据进行对比,显示预测结果与实测数据变化趋势高度吻合,充分验证了预测模型的可行性、有效性与稳定性。 展开更多
关键词 地铁隧道 arMA模型 变形预测 时间序列
下载PDF
Auto-Regressive Models of Non-Stationary Time Series with Finite Length 被引量:7
18
作者 费万春 白伦 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第2期162-168,共7页
To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. ... To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length. 展开更多
关键词 time series analysis auto-covariance NON-STATIONarY auto-regressive model size curve of cocoon filament
原文传递
A novel approach to equipment health management based on auto-regressive hidden semi-Markov model(AR-HSMM) 被引量:5
19
作者 DONG Ming 《Science in China(Series F)》 2008年第9期1291-1304,共14页
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno... As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management. 展开更多
关键词 auto-regressive hidden semi-Markov model DIAGNOSIS PROGNOSIS Markov model
原文传递
Time-varying parameter auto-regressive models for autocovariance nonstationary time series 被引量:2
20
作者 FEI WanChun BAI Lun 《Science China Mathematics》 SCIE 2009年第3期577-584,共8页
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t... In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out. 展开更多
关键词 autocovariance nonstationary time series time-varying parameter time-varying order auto-regressive model minimum AIC estimation 37M10 68Q10
原文传递
上一页 1 2 52 下一页 到第
使用帮助 返回顶部