Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the ca...Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the carding machine serves a critical role in the textile industry. The carding machine’s licker-in and flat speeds are crucial operational factors that have a big influence on the finished goods’ quality. The purpose of this study is to examine the link between licker-in and flat speeds and how they affect the yarn and carded sliver quality. A thorough experimental examination on a carding machine was carried out to accomplish this. The carded sliver and yarn produced after experimenting with different licker-in and flat speed combinations were assessed for important quality factors including evenness, strength, and flaws. To account for changes in material qualities and machine settings, the study also took into consideration the impact of various fiber kinds and processing circumstances. The findings of the investigation showed a direct relationship between the quality of the carded sliver and yarn and the licker-in and flat speeds. Within a limited range, greater licker-in speeds were shown to increase carding efficiency and decrease fiber tangling. On the other hand, extremely high speeds led to more fiber breakage and neps. Higher flat speeds, on the other hand, helped to enhance fiber alignment, which increased the evenness and strength of the carded sliver and yarn. Additionally, it was discovered that the ideal blend of licker-in and flat rates varied based on the fiber type and processing circumstances. When being carded, various fibers displayed distinctive behaviors that necessitated adjusting the operating settings in order to provide the necessary quality results. The study also determined the crucial speed ratios between the licker-in and flat speeds that reduced fiber breakage and increased the caliber of the finished goods. The results of this study offer useful information for textile producers and process engineers to improve the quality of carded sliver and yarn while maximizing the performance of carding machines. Operators may choose machine settings and parameter adjustments wisely by knowing the impacts of licker-in and flat speeds, which will increase textile industry efficiency, productivity, and product quality.展开更多
In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardwar...In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.展开更多
Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the ca...Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the carding machine serves a critical role in the textile industry. The carding machine’s licker-in and flat speeds are crucial operational factors that have a big influence on the finished goods’ quality. The purpose of this study is to examine the link between licker-in and flat speeds and how they affect the yarn and carded sliver quality. A thorough experimental examination on a carding machine was carried out to accomplish this. The carded sliver and yarn produced after experimenting with different licker-in and flat speed combinations were assessed for important quality factors including evenness, strength, and flaws. To account for changes in material qualities and machine settings, the study also took into consideration the impact of various fiber kinds and processing circumstances. The findings of the investigation showed a direct relationship between the quality of the carded sliver and yarn and the licker-in and flat speeds. Within a limited range, greater licker-in speeds were shown to increase carding efficiency and decrease fiber tangling. On the other hand, extremely high speeds led to more fiber breakage and neps. Higher flat speeds, on the other hand, helped to enhance fiber alignment, which increased the evenness and strength of the carded sliver and yarn. Additionally, it was discovered that the ideal blend of licker-in and flat rates varied based on the fiber type and processing circumstances. When being carded, various fibers displayed distinctive behaviors that necessitated adjusting the operating settings in order to provide the necessary quality results. The study also determined the crucial speed ratios between the licker-in and flat speeds that reduced fiber breakage and increased the caliber of the finished goods. The results of this study offer useful information for textile producers and process engineers to improve the quality of carded sliver and yarn while maximizing the performance of carding machines. Operators may choose machine settings and parameter adjustments wisely by knowing the impacts of licker-in and flat speeds, which will increase textile industry efficiency, productivity, and product quality.展开更多
Rieter’s customer Shangshui Xianghu Textile wants to find a way of efficiently using the cotton noils and cotton waste from the blowroom and the card and to thus profitably optimize their raw material blends. Using r...Rieter’s customer Shangshui Xianghu Textile wants to find a way of efficiently using the cotton noils and cotton waste from the blowroom and the card and to thus profitably optimize their raw material blends. Using rotor spinning machine R 36 has provided the company with an incredibly positive experience.展开更多
The combing process of gill machine is an important link in the wool spinning technology.Inorder to improve the quality of products,it is necessary to study the new autoleveling device whichuses the modern control the...The combing process of gill machine is an important link in the wool spinning technology.Inorder to improve the quality of products,it is necessary to study the new autoleveling device whichuses the modern control theory and microcomputer science.We have to set up a mathematicalmodel for object:As the woolen yarns (both input and output) are complex random process,it issuitable for CARMA (controlled autoregressive-moving average) to describe the object by meansof time series analyses of models.展开更多
The article is devoted to the study of spreading of the twisted yarn in a spinning cell. The article presents the scheme and principle of operation of the effective design of the yarn-output tube of pneumomechanical s...The article is devoted to the study of spreading of the twisted yarn in a spinning cell. The article presents the scheme and principle of operation of the effective design of the yarn-output tube of pneumomechanical spinning machine. To determine the law of motion of a roller installed in a yarn-output tube, the tension of the thread enveloping the surface of the rotating roller was studied, as a result of which the equation of its motion was obtained. As a result of solving the equation, the values of the thread tension on the surface of the rotating roller are obtained. The dependences of the change in the tension of the thread in time are obtained depending on the angle of rotation and the mass of the roller. The recommended design of the yarn-output tube allows increasing the strength characteristics of the pneumomechanical yarn.展开更多
The structure of a hollow spindle wrap spun yarn depends greatly on the steadiness of bindertension and of balloon rotation.The two commonly used binder bobbin forms,the cop type andthe flanged type,both as sources of...The structure of a hollow spindle wrap spun yarn depends greatly on the steadiness of bindertension and of balloon rotation.The two commonly used binder bobbin forms,the cop type andthe flanged type,both as sources of spinning condition fluctuation,are examined in order to revealtheir effects on the wrap spun yarn structure.False twist is introduced on hollow spindle spinningmachines in order to avoid strand breaks before it is tightly wrapped up.However,an investigationof the false twisti g-wrapping process shows that this inevitably causes irregular yarn tortuosity.展开更多
文摘Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the carding machine serves a critical role in the textile industry. The carding machine’s licker-in and flat speeds are crucial operational factors that have a big influence on the finished goods’ quality. The purpose of this study is to examine the link between licker-in and flat speeds and how they affect the yarn and carded sliver quality. A thorough experimental examination on a carding machine was carried out to accomplish this. The carded sliver and yarn produced after experimenting with different licker-in and flat speed combinations were assessed for important quality factors including evenness, strength, and flaws. To account for changes in material qualities and machine settings, the study also took into consideration the impact of various fiber kinds and processing circumstances. The findings of the investigation showed a direct relationship between the quality of the carded sliver and yarn and the licker-in and flat speeds. Within a limited range, greater licker-in speeds were shown to increase carding efficiency and decrease fiber tangling. On the other hand, extremely high speeds led to more fiber breakage and neps. Higher flat speeds, on the other hand, helped to enhance fiber alignment, which increased the evenness and strength of the carded sliver and yarn. Additionally, it was discovered that the ideal blend of licker-in and flat rates varied based on the fiber type and processing circumstances. When being carded, various fibers displayed distinctive behaviors that necessitated adjusting the operating settings in order to provide the necessary quality results. The study also determined the crucial speed ratios between the licker-in and flat speeds that reduced fiber breakage and increased the caliber of the finished goods. The results of this study offer useful information for textile producers and process engineers to improve the quality of carded sliver and yarn while maximizing the performance of carding machines. Operators may choose machine settings and parameter adjustments wisely by knowing the impacts of licker-in and flat speeds, which will increase textile industry efficiency, productivity, and product quality.
文摘In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.
文摘Spinning has a significant influence on all textile processes. Combinations of all the capital equipment display the process’ critical condition. By transforming unprocessed fibers into carded sliver and yarn, the carding machine serves a critical role in the textile industry. The carding machine’s licker-in and flat speeds are crucial operational factors that have a big influence on the finished goods’ quality. The purpose of this study is to examine the link between licker-in and flat speeds and how they affect the yarn and carded sliver quality. A thorough experimental examination on a carding machine was carried out to accomplish this. The carded sliver and yarn produced after experimenting with different licker-in and flat speed combinations were assessed for important quality factors including evenness, strength, and flaws. To account for changes in material qualities and machine settings, the study also took into consideration the impact of various fiber kinds and processing circumstances. The findings of the investigation showed a direct relationship between the quality of the carded sliver and yarn and the licker-in and flat speeds. Within a limited range, greater licker-in speeds were shown to increase carding efficiency and decrease fiber tangling. On the other hand, extremely high speeds led to more fiber breakage and neps. Higher flat speeds, on the other hand, helped to enhance fiber alignment, which increased the evenness and strength of the carded sliver and yarn. Additionally, it was discovered that the ideal blend of licker-in and flat rates varied based on the fiber type and processing circumstances. When being carded, various fibers displayed distinctive behaviors that necessitated adjusting the operating settings in order to provide the necessary quality results. The study also determined the crucial speed ratios between the licker-in and flat speeds that reduced fiber breakage and increased the caliber of the finished goods. The results of this study offer useful information for textile producers and process engineers to improve the quality of carded sliver and yarn while maximizing the performance of carding machines. Operators may choose machine settings and parameter adjustments wisely by knowing the impacts of licker-in and flat speeds, which will increase textile industry efficiency, productivity, and product quality.
文摘Rieter’s customer Shangshui Xianghu Textile wants to find a way of efficiently using the cotton noils and cotton waste from the blowroom and the card and to thus profitably optimize their raw material blends. Using rotor spinning machine R 36 has provided the company with an incredibly positive experience.
文摘The combing process of gill machine is an important link in the wool spinning technology.Inorder to improve the quality of products,it is necessary to study the new autoleveling device whichuses the modern control theory and microcomputer science.We have to set up a mathematicalmodel for object:As the woolen yarns (both input and output) are complex random process,it issuitable for CARMA (controlled autoregressive-moving average) to describe the object by meansof time series analyses of models.
文摘The article is devoted to the study of spreading of the twisted yarn in a spinning cell. The article presents the scheme and principle of operation of the effective design of the yarn-output tube of pneumomechanical spinning machine. To determine the law of motion of a roller installed in a yarn-output tube, the tension of the thread enveloping the surface of the rotating roller was studied, as a result of which the equation of its motion was obtained. As a result of solving the equation, the values of the thread tension on the surface of the rotating roller are obtained. The dependences of the change in the tension of the thread in time are obtained depending on the angle of rotation and the mass of the roller. The recommended design of the yarn-output tube allows increasing the strength characteristics of the pneumomechanical yarn.
文摘The structure of a hollow spindle wrap spun yarn depends greatly on the steadiness of bindertension and of balloon rotation.The two commonly used binder bobbin forms,the cop type andthe flanged type,both as sources of spinning condition fluctuation,are examined in order to revealtheir effects on the wrap spun yarn structure.False twist is introduced on hollow spindle spinningmachines in order to avoid strand breaks before it is tightly wrapped up.However,an investigationof the false twisti g-wrapping process shows that this inevitably causes irregular yarn tortuosity.