期刊文献+
共找到41,351篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-blade rubbing characteristics of the shaft-disk-blade-casing system with large rotation
1
作者 Zhiyuan WU Linchuan ZHAO +3 位作者 Han YAN Ge YAN Ao CHEN Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期111-136,共26页
Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b... Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery. 展开更多
关键词 shaft-disk-blade-casing(SDBC) large rotation spin and whirl multi-blade rubbing rotational effect
下载PDF
Integrated analysis of plasma rotation effect on HL-3 hybrid scenario
2
作者 薛淼 郑国尧 +5 位作者 薛雷 李佳鲜 王硕 杜海龙 朱毅仁 周月 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期329-336,共8页
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t... The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density. 展开更多
关键词 HL-3 hybrid scenario toroidal rotation integrated modeling
下载PDF
{1012}twin–twin intersection-induced lattice rotation and dynamic recrystallization in Mg–6Al–3Sn–2Zn alloy
3
作者 Bin-Jiang Lv Sen Wang +4 位作者 Fu-Hao Gao Ning Cui Yi-Nan Li Tie-Wei Xu Feng Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1529-1539,共11页
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect... This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization. 展开更多
关键词 Mg alloy Twin-twin intersection Lattice rotation Dynamic recrystallization
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
4
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Strategies for improving crop comprehensive benefits via a decision-making system based on machine learning in the rice‒rape,rice‒wheat and rice‒garlic rotation systems in Southwest China
5
作者 Xinrui Li Xiafei Li +9 位作者 Tao Liu Huilai Yin Hao Fu Yongheng Luo Yanfu Bai Hongkun Yang Zhiyuan Yang Yongjian Sun Jun Ma Zongkui Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2970-2988,共19页
Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of Ch... Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of China’s food security in the region.However,the crop yields in these rotation systems are 1.25‒14.73%lower in this region than the national averages.Intelligent decision-making with machine learning can analyze the key factors for obtaining better benefits,but it has rarely been used to enhance the probability of obtaining such benefits from rotations in Southwest China.Thus,we used a data-intensive approach to construct an intelligent decision‒making system with machine learning to provide strategies for improving the benefits of rice-rape,rice-wheat,and rice-garlic rotations in Southwest China.The results show that raising the yield and partial fertilizer productivity(PFP)by increasing seed input under high fertilizer application provided the optimal benefits with a 10%probability in the rice-garlic system.Obtaining high yields and greenhouse gas(GHG)emissions by increasing the N application and reducing the K application provided suboptimal benefits with an 8%probability in the rice-rape system.Reducing N and P to enhance PFP and yield provided optimal benefits with the lowest probability(8%)in the rice‒wheat system.Based on the predictive analysis of a random forest model,the optimal benefits were obtained with fertilization regimes by reducing N by 25%and increasing P and K by 8 and 74%,respectively,in the rice-garlic system,reducing N and K by 54 and by 36%,respectively,and increasing P by 38%in rice-rape system,and reducing N by 4%and increasing P and K by 65 and 23%in rice-wheat system.These strategies could be further optimized by 17‒34%for different benefits,and all of these measures can improve the effectiveness of the crop rotation systems to varying degrees.Overall,these findings provide insights into optimal agricultural inputs for higher benefits through an intelligent decision-making system with machine learning analysis in the rice-rape,rice‒wheat,and rice-garlic systems. 展开更多
关键词 rice rotation agricultural management greenhouse gas emissions comprehensive benefits fertilizer management
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds
6
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed Al alloy
下载PDF
Numerical Simulations of Snow Accumulation in the Bogie Region of a Train Considering Snow Particle Rotation
7
作者 Hong Lan Jiye Zhang +1 位作者 Yao Zhang Lu Cai 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2337-2352,共16页
To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of sn... To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of snow particle diameter and train speed on the ensuing dynamics.It is shown that considering snow particle rotational motion causes significant deviation in the particle trajectories with respect to non-rotating particles.Such a deviation increases with larger snow particle diameters and higher train speeds.The snow accumulation on the overall surface of the bogie increases,and the amount of snow on the vibration reduction device varies greatly.In certain conditions,the amount of accumulated snow can increase by several orders of magnitudes. 展开更多
关键词 High-speed train BOGIE snow particle rotation discrete phase model snow accumulation
下载PDF
Dual-Fields Rotational Total Skin Electron Therapy: Investigation and Implementation
8
作者 M. Ming Xu Iris Rusu Richard P. Garza 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2024年第1期1-15,共15页
Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and M... Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and Materials: The DFR-TSET combined the Stanford 6-field and McGill rotational methods. Dual 6 MeV electron beams in high dose total skin electron mode were used for DFR-TSET on a commercial linac. Beam profiles and dosimetric properties were measured using solid phantoms. The dose rate at expanded source-to-surface distance (SSD) was a combination of static rate and rotational rate. In vivo dosimetry of patient skin was performed on patients’ skin using film, metal oxide semiconductor field-effect transistors (MOSFET), and optically stimulated luminescent dosimeters (OSLD). Results: Dual field rotational total skin electron therapy exhibited good (≤±10%) uniformity in the beam profiles in the vertical direction at an extended SSD of 332 cm with a gantry angulation of ±20˚ deviated from the horizontal direction. In-vivo measurements confirmed acceptable uniformity of the patients’ total body surfaces and revealed anatomically self-blocked or shielded areas where underdosing occurred. Conclusions: The clinical implementation of DFR-TSET effectively utilizes the special mode on a linac. This technique provides short beam-on times, uniform dose distribution, large treatment field, and reduced dose of x-ray contamination to the patients. In-vivo measurements indicate satisfactory delivery and dose uniformity of the prescribed dose. Electron boost fields are recommended at normal SSDs to address underdosed areas. 展开更多
关键词 Total Skin Electron Therapy Stanford 6 Field McGill rotation Therapy In-Vivo Dosimetry
下载PDF
Investigation on the roles of equilibrium toroidal rotation during edge-localized mode mitigated by resonant magnetic perturbations
9
作者 董良康 陈少永 +3 位作者 牟茂淋 罗杨 秦晨晨 唐昌建 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期16-33,共18页
The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field mode... The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear. 展开更多
关键词 edge-localized mode peeling–ballooning modes resonant magnetic perturbation toroidal rotation plasma response TOKAMAK
下载PDF
Several Cotton Rotation and Intercropping Systems in Cotton Planting Area of Eastern Henan Province
10
作者 Yubei DU Zongyan CHU +6 位作者 Yuxuan TANG Mingjuan CHANG Chao WU Yanan ZHAN Suling LIU Xiaohong SI Yuqin ZHOU 《Plant Diseases and Pests》 2024年第4期40-42,共3页
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index... In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system. 展开更多
关键词 COTTON INTERCROPPING Crop rotation Wheat Dutch bean WATERMELON
下载PDF
Rock strength weakening subject to principal stress rotation:Experimental and numerical investigations
11
作者 Huandui Liu Guibin Wang +2 位作者 Chunhe Yang Junyue Zhang Shiwan Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3544-3557,共14页
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in... During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs. 展开更多
关键词 Principal stress rotation(PSR) Fracture mechanics Hollow cylinder torsional apparatus for rock (HCAR) Particle flow method Rock strength
下载PDF
Vibrational Suspension of Two Cylinders in a Rotating Liquid-Filled Cavity with a Time-Varying Rotation Rate
12
作者 Olga Vlasova 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2127-2137,共11页
The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems ca... The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types.Controlling inclusions is of current interest for space technologies.In low gravity,even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary.When vibrations are applied to multiphase hydrodynamic systems,the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.Asymmetries in the fluid flow lead to the appearance of an averaged force.As a result,the body is repelled from the cavity boundary and takes a position at a certain distance from it.The vibrationally-induced movement of phase inclusions in liquids can be used to improve various technological processes(for example,when degassing and cleaning liquids from solid inclusions,mixing various components,etc.).This study presents a relevant methodology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall of a cavity.Attention is paid to the region of moderate and low dimensionless frequencies when the size of the inclusion is consistent with the thickness of the Stokes boundary layer.The dynamics of these bodies is considered in a horizontal cylindrical cavity with a fluid undergoing modulated rotation.The average lift force of a vibrational nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density of the liquid in a static centrifugal force field.The developed technique makes it possible to determine the dependence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclusions are located.It is shown that in the region of moderate dimensionless frequencies,the average lift force acting on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless frequency. 展开更多
关键词 Solid bodies rotational oscillations viscous fluid lift force
下载PDF
Research on the influence of flexible wheelset rotation effect on wheel rail contact force
13
作者 Lixia Sun Yuanwu Cai +2 位作者 Di Cheng Xiaoyi Hu Chunyang Zhou 《Railway Sciences》 2024年第3期367-387,共21页
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an... Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models. 展开更多
关键词 Flexible wheelset Contact points calculation rotational effects Elastic modes Wheel-rail force Papertype Researchpaper
下载PDF
Improved Units of Measure in Rotational Mechanics
14
作者 Richard James Petti 《World Journal of Mechanics》 2024年第1期1-7,共7页
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene... The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units. 展开更多
关键词 rotational Mechanics Angular Unit TORQUE Moment of Inertia Angular Momentum General Covariance
下载PDF
Retrospective Case Series on The Enduring Rotational Stability of The AcrySof IQ Toric Intraocular Lens in Cataract Patients Suffering from Myopia
15
作者 Jie Luo Yang Liu +2 位作者 Bing Wang Lei Li Junyu Yang 《Journal of Clinical and Nursing Research》 2024年第3期207-214,共8页
Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case se... Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case series involving 78 patients.A total of 120 eyes with an axial length(AL)ranging from 24-30 mm and corneal astigmatism≥1.50 D underwent implantation of AcrySof IQ Toric IOL guided by the version navigation system.The eyes were divided into two groups based on AL.Group A included 60 eyes with high myopia(AL≥26 mm),while Group B consisted of eyes with low to moderate myopia(24 mm≤AL<26 mm).Data on the preoperative AL were collected.Measurements were taken for residual astigmatism,the best corrected visual acuity(BCDVA),corneal astigmatism,and IOL rotation occurring between 24-and 48-months post-surgery.The percentage of eyes with an IOL rotation of under 5°and 10°was analyzed.Results:The mean length of follow-up times was recorded as 34.27±4.98,and the average rotation was 2.73±1.29°.Group A exhibited a slightly higher average rotation of 2.87±1.31°,compared to the rotation of 2.59±1.27°observed in Group B.At both the 24-36 month and 26-48 month post-operation marks,the degree of IOL rotation did not show a statistically significant difference between the two groups,with none of the patients experiencing a rotation exceeding 10°(P>0.05).The percentage of rotation degrees under 5°was recorded as 98.22%.After the procedure,the BCDVA was 0.1322±0.03 LogMAR.There was a substantial increase in theχvalue after the operation as compared to the pre-operativeχ^(2) value(χ^(2)=76.79).The standard deviation of preoperative corneal astigmatism was statistically significant(P<0.05)at 2.17±1.08 D.Following the surgical procedure,the remaining astigmatism was measured at 0.41±0.26 D.The data showed a notable gap in statistical significance(t=4.281,P<0.05).Conclusion:The AcrySof Toric IOL was a reliable solution for managing corneal astigmatism in cataract patients with myopia,demonstrating excellent long-term rotational stability. 展开更多
关键词 ASTIGMATISM Long-term MYOPIA rotational stability
下载PDF
The Origin of the Flat Rotation Curves in Spiral Galaxies: The Hidden Roles of Glitching SMDEOs and Emission of Gravitational Waves
16
作者 Ahmad A. Hujeirat Peter Berczik 《Journal of Modern Physics》 2024年第10期1523-1542,共20页
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th... Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation. 展开更多
关键词 General Relativity: Black Holes Neutron Stars Quantum Fields: QCD Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Cosmology: Galaxy Formation Spiral Galaxies Dark Matter rotation Curves
下载PDF
NCCT for Micropolar Solid and Fluid Media Based on Internal Rotations and Rotation Rates with Rotational Inertial Physics: Model Problem Studies
17
作者 Karan S. Surana Jacob K. Kendall 《Applied Mathematics》 2023年第9期612-651,共40页
This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations... This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies. 展开更多
关键词 MICROPOLAR Internal rotations Internal rotation Rates Translational Waves rotational Waves DISSIPATION Thermoviscous rotational Inertial Physics
下载PDF
Two-Stage Procrustes Rotation with Sparse Target Matrix and Least Squares Criterion with Regularization and Generalized Weighting
18
作者 Naoto Yamashita 《Open Journal of Statistics》 2023年第2期264-284,共21页
In factor analysis, a factor loading matrix is often rotated to a simple target matrix for its simplicity. For the purpose, Procrustes rotation minimizes the discrepancy between the target and rotated loadings using t... In factor analysis, a factor loading matrix is often rotated to a simple target matrix for its simplicity. For the purpose, Procrustes rotation minimizes the discrepancy between the target and rotated loadings using two types of approximation: 1) approximate the zeros in the target by the non-zeros in the loadings, and 2) approximate the non-zeros in the target by the non-zeros in the loadings. The central issue of Procrustes rotation considered in the article is that it equally treats the two types of approximation, while the former is more important for simplifying the loading matrix. Furthermore, a well-known issue of Simplimax is the computational inefficiency in estimating the sparse target matrix, which yields a considerable number of local minima. The research proposes a new rotation procedure that consists of the following two stages. The first stage estimates sparse target matrix with lesser computational cost by regularization technique. In the second stage, a loading matrix is rotated to the target, emphasizing on the approximation of non-zeros to zeros in the target by least squares criterion with generalized weighing that is newly proposed by the study. The simulation study and real data examples revealed that the proposed method surely simplifies loading matrices. 展开更多
关键词 Factor rotation Procrustes rotation SIMPLICITY Alternating Least Squares
下载PDF
Analysis of particle dispersion in a turbulent flow considering particle rotation 被引量:1
19
作者 Wenshi Huang Yang Zhang +2 位作者 Yuxin Wu Jingyu Wang Minmin Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期29-39,共11页
Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of n... Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of non-spherical particles considering particle drag correction,lift,and rotation was established.Based on the Eulerian-Lagrangian simulation,the dispersion characteristics of spherical and nonspherical particles with different Stokes numbers in a high-speed turbulent jet were analyzed and compared considering the effect of particle rotation.The results show that,the differences in particle dispersion and radial velocity fluctuation between non-spherical particles and spherical particles in the jet are significant,especially when Stokes number is large.Moreover,the effects of different type of forces on the dispersion of non-spherical particles and spherical particles were compared in detail,which revealed that the change of the Magnus force caused by the increase in the angular velocity of non-spherical particles plays a dominant role in the differences of particle dispersion. 展开更多
关键词 DISPERSION PARTICLE Particle-laden flows Particle rotation Turbulent flow
下载PDF
Underlying slip/twinning activities of Mg-xGd alloys investigated by modified lattice rotation analysis 被引量:2
20
作者 Biaobiao Yang Chenying Shi +7 位作者 Xianjue Ye Jianwei Teng Ruilin Lai Yujie Cui Dikai Guan Hongwei Cui Yunping Li Akihiko Chiba 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期998-1015,共18页
The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-co... The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified. 展开更多
关键词 Mg-Gd alloy Non-basal slips Postponed twinning Grain boundary segregation Modified lattice rotation analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部