Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mizati...Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.展开更多
Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchroniz...Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.展开更多
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of ...A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.展开更多
Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many o...Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.展开更多
To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is ...To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.展开更多
In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship...In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.展开更多
For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in...For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.展开更多
This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Fr...This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Frequency Division Multiplexing(OFDM)receivers used for high speed and high spectral efficient wireless communication systems.The MAP cost function for joint estimation and detection is derived and optimized further with the proposed cyclic gradient descent optimization algorithm.The proposed joint estimation and detection algorithm relaxes the restriction of small PHN assumptions and utilizes the prior statistical knowledge of PHN spectral components to produce a statistically optimal solution.The frequency-domain estimation of Channel Transfer Function(CTF)in frequency selective fading makes the method simpler,compared with the estimation of Channel Impulse Response(CIR)in the time domain.Two different time-varying PHN models,produced by Free Running Oscillator(FRO)and Phase-Locked Loop(PLL)oscillator,are presented and compared for performance difference with proposed OFDM receiver.Simulation results for joint MAP channel estimation are compared with Cramer-Rao Lower Bound(CRLB),and the simulation results for joint MAP data detection are compared with“NO PHN"performance to demonstrate that the proposed joint MAP estimation and detection algorithm achieve near-optimum performance even under multipath channel fading.展开更多
Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX04003004)
文摘Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.
文摘Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61102053)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF201405)+1 种基金the Open Fund of IPOC(BUPT)(Grant No.IPOC2015B004)the Program of State Key Laboratory of Information Security(Grant No.2016-MS-05)
文摘A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.
文摘Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.
基金supported by the National Science and Technology Major Project of China(2013ZX03003006-003)
文摘To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.
基金supported by the National Natural Science Foundation of China(6167309361370152)the Science and Technology Project of Shenyang(F16-205-1-01)
文摘In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.
基金supported by the NSFC(Joint Foundation of NSFC&Fundamental Research for General Purpose Technologies)under Grant U1636125
文摘For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.
文摘This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Frequency Division Multiplexing(OFDM)receivers used for high speed and high spectral efficient wireless communication systems.The MAP cost function for joint estimation and detection is derived and optimized further with the proposed cyclic gradient descent optimization algorithm.The proposed joint estimation and detection algorithm relaxes the restriction of small PHN assumptions and utilizes the prior statistical knowledge of PHN spectral components to produce a statistically optimal solution.The frequency-domain estimation of Channel Transfer Function(CTF)in frequency selective fading makes the method simpler,compared with the estimation of Channel Impulse Response(CIR)in the time domain.Two different time-varying PHN models,produced by Free Running Oscillator(FRO)and Phase-Locked Loop(PLL)oscillator,are presented and compared for performance difference with proposed OFDM receiver.Simulation results for joint MAP channel estimation are compared with Cramer-Rao Lower Bound(CRLB),and the simulation results for joint MAP data detection are compared with“NO PHN"performance to demonstrate that the proposed joint MAP estimation and detection algorithm achieve near-optimum performance even under multipath channel fading.
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.