The electric distribution system(EDS)is prone to faults leading to power interruptions.The present energy market demands that electricity utilities invest more in different measures to improve the performance of the E...The electric distribution system(EDS)is prone to faults leading to power interruptions.The present energy market demands that electricity utilities invest more in different measures to improve the performance of the EDS.The approach proposed here details a composite dual-phased methodology to improve the reliability and efficiency of the power delivered by the EDS.In the first phase,the optimal allocation of auto-reclosers(AR)is undertaken by employing a newly formulated algorithm.The determination of the total number and location for AR placement is based on the economic analysis of two factors,i.e.,AR investment-maintenance cost and total benefit earned in terms of reliability improvement due to AR placement.The analysis also takes into account the impact of power outages on different load types,the load growth rate,and the inflation rate.Further,to enhance the efficiency of the AR-incorpo-rated EDS,the technique of Radial Distribution System Remodelling is employed in the second phase.This method searches for a radial configuration that delivers power at minimum line losses.These phases comprising complex combinatorial operations are aided by a fresh hybrid of the Sine Cosine Algorithm,Krill Herd Algorithm,and a genetic operator of Differential Evolution.The results obtained from its application on the IEEE 69-bus distribution test system prove the credibility of the suggested formulation.展开更多
The use of overhead lines for power transmission in the future high-voltage and large-capacity voltagesource converter(VSC)-based direct current(DC) grid will significantly increase the probability of temporary faults...The use of overhead lines for power transmission in the future high-voltage and large-capacity voltagesource converter(VSC)-based direct current(DC) grid will significantly increase the probability of temporary faults.To eliminate potential adverse impacts such as erroneous protection, line-insulation failure, and even damage to power electronic devices resulting from a DC breaker reclosing operation with the traditional sequential autoreclosing strategy, a new sequential auto-reclosing strat-egy for hybrid HVDC breakers(HHBs) in VSC-based DC grids is proposed. This strategy is based on the step-by-step operation of the transfer branch in the HHB. As a result,du/dt resulting from the HHB reclosing operation is greatly reduced, and therefore those potential negative impacts can be eliminated. Several other advantages are also presented.The feasibility and validity of the proposed strategy are verified in a four-terminal annular VSC-based DC grid electromagnetic transient model.展开更多
Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time...Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time is very common however reclosing onto permanent faults may damage the power system stability and aggravate severe damage to the system. Thus, adaptive single-phase auto-reclosing (ASPAR) based on investigating existing electrical signals has fascinated engineers and researchers. An ASPAR blocks CB reclosing onto permanent faults and allows reclosing permission once secondary arc is quenched. To address the subject, there have been many ASPARs techniques proposed based on the features trapped in a faulty phase. This paper presents a critical survey of adaptive auto-reclosing schemes that have hitherto been applied to EHV transmission lines.展开更多
We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coeffic...We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coefficients of the nodes 257, 259 to 262. An index is then defined from the sum of the energy coefficients of these nodes. By evaluating the index, transient and permanent faults, as well as the secondary arc extinction instant, can be identified. The significant advantage of the proposed algorithm is that it does not need a threshold level and therefore its performance is independent of fault location, line parameters, and operating conditions. Moreover, it can be used in transmission lines with reactor compensation. The proposed method has been successfully tested under a variety of fault conditions on a 400 kV overhead line of the Iranian National Grid using the Electro-Magnetic Transient Program (EMTP). The test results validated the algorithm’s ability in distinguishing between transient arcing and permanent faults and determining the instant of secondary arc extinction.展开更多
文摘The electric distribution system(EDS)is prone to faults leading to power interruptions.The present energy market demands that electricity utilities invest more in different measures to improve the performance of the EDS.The approach proposed here details a composite dual-phased methodology to improve the reliability and efficiency of the power delivered by the EDS.In the first phase,the optimal allocation of auto-reclosers(AR)is undertaken by employing a newly formulated algorithm.The determination of the total number and location for AR placement is based on the economic analysis of two factors,i.e.,AR investment-maintenance cost and total benefit earned in terms of reliability improvement due to AR placement.The analysis also takes into account the impact of power outages on different load types,the load growth rate,and the inflation rate.Further,to enhance the efficiency of the AR-incorpo-rated EDS,the technique of Radial Distribution System Remodelling is employed in the second phase.This method searches for a radial configuration that delivers power at minimum line losses.These phases comprising complex combinatorial operations are aided by a fresh hybrid of the Sine Cosine Algorithm,Krill Herd Algorithm,and a genetic operator of Differential Evolution.The results obtained from its application on the IEEE 69-bus distribution test system prove the credibility of the suggested formulation.
基金supported by National Key R&D Program of China (No. 2017YFB0902400)
文摘The use of overhead lines for power transmission in the future high-voltage and large-capacity voltagesource converter(VSC)-based direct current(DC) grid will significantly increase the probability of temporary faults.To eliminate potential adverse impacts such as erroneous protection, line-insulation failure, and even damage to power electronic devices resulting from a DC breaker reclosing operation with the traditional sequential autoreclosing strategy, a new sequential auto-reclosing strat-egy for hybrid HVDC breakers(HHBs) in VSC-based DC grids is proposed. This strategy is based on the step-by-step operation of the transfer branch in the HHB. As a result,du/dt resulting from the HHB reclosing operation is greatly reduced, and therefore those potential negative impacts can be eliminated. Several other advantages are also presented.The feasibility and validity of the proposed strategy are verified in a four-terminal annular VSC-based DC grid electromagnetic transient model.
文摘Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time is very common however reclosing onto permanent faults may damage the power system stability and aggravate severe damage to the system. Thus, adaptive single-phase auto-reclosing (ASPAR) based on investigating existing electrical signals has fascinated engineers and researchers. An ASPAR blocks CB reclosing onto permanent faults and allows reclosing permission once secondary arc is quenched. To address the subject, there have been many ASPARs techniques proposed based on the features trapped in a faulty phase. This paper presents a critical survey of adaptive auto-reclosing schemes that have hitherto been applied to EHV transmission lines.
文摘We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coefficients of the nodes 257, 259 to 262. An index is then defined from the sum of the energy coefficients of these nodes. By evaluating the index, transient and permanent faults, as well as the secondary arc extinction instant, can be identified. The significant advantage of the proposed algorithm is that it does not need a threshold level and therefore its performance is independent of fault location, line parameters, and operating conditions. Moreover, it can be used in transmission lines with reactor compensation. The proposed method has been successfully tested under a variety of fault conditions on a 400 kV overhead line of the Iranian National Grid using the Electro-Magnetic Transient Program (EMTP). The test results validated the algorithm’s ability in distinguishing between transient arcing and permanent faults and determining the instant of secondary arc extinction.