期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
1
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
Applications of time series analysis in epidemiology: Literature review and our experience during COVID-19 pandemic
2
作者 Latchezar Tomov Lyubomir Chervenkov +2 位作者 Dimitrina Georgieva Miteva Hristiana Batselova TsvetelinaVelikova 《World Journal of Clinical Cases》 SCIE 2023年第29期6974-6983,共10页
Time series analysis is a valuable tool in epidemiology that complements the classical epidemiological models in two different ways:Prediction and forecast.Prediction is related to explaining past and current data bas... Time series analysis is a valuable tool in epidemiology that complements the classical epidemiological models in two different ways:Prediction and forecast.Prediction is related to explaining past and current data based on various internal and external influences that may or may not have a causative role.Forecasting is an exploration of the possible future values based on the predictive ability of the model and hypothesized future values of the external and/or internal influences.The time series analysis approach has the advantage of being easier to use(in the cases of more straightforward and linear models such as Auto-Regressive Integrated Moving Average).Still,it is limited in forecasting time,unlike the classical models such as Susceptible-Exposed-Infectious-Removed.Its applicability in forecasting comes from its better accuracy for short-term prediction.In its basic form,it does not assume much theoretical knowledge of the mechanisms of spreading and mutating pathogens or the reaction of people and regulatory structures(governments,companies,etc.).Instead,it estimates from the data directly.Its predictive ability allows testing hypotheses for different factors that positively or negatively contribute to the pandemic spread;be it school closures,emerging variants,etc.It can be used in mortality or hospital risk estimation from new cases,seroprevalence studies,assessing properties of emerging variants,and estimating excess mortality and its relationship with a pandemic. 展开更多
关键词 Time series analysis EPIDEMIOLOGY COVID-19 PANDEMIC auto-regressive integrated moving average Excess mortality SEROPREVALENCE
下载PDF
时间序列分析及模型构建在预测手足口病方面的应用 被引量:9
3
作者 黄平 冯慧芬 +1 位作者 王斌 赵敬 《实用医学杂志》 CAS 北大核心 2018年第9期1554-1556,共3页
目的探讨时间序列分析及模型构建在预测手足口病方面的使用价值。方法通过分析郑州市某医院2009年1月到2016年10月的手足口病发病数据,按照时间序列分析的方法,建立季节性自回归积分移动平均(SARIMA)模型,并对模型进行拟合度评价,判断... 目的探讨时间序列分析及模型构建在预测手足口病方面的使用价值。方法通过分析郑州市某医院2009年1月到2016年10月的手足口病发病数据,按照时间序列分析的方法,建立季节性自回归积分移动平均(SARIMA)模型,并对模型进行拟合度评价,判断拟合值和实测值之间的符合程度。结果经过参数探索,最终确定最佳拟合模型为SARIMA(1,0,1)(1,0,1)12,其平稳R2为0.734;Ljung-Box Q(18)统计量值为10.497,P=0.725,拟合值和实测值的两条曲线较为接近,提示模型具有较好的拟合能力。结论时间序列分析以及季节性自回归积分移动平均(SARIMA)模型在预测手足口病方面具有较好的预测能力。 展开更多
关键词 手足口病 时间序列分析 SARIMA模型
下载PDF
网络化制造环境下离散供应链系统预测控制策略 被引量:1
4
作者 董海 王宛山 李彦平 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第23期5427-5430,5446,共5页
针对离散供应链系统中客户需求的高度不确定性,提出最小方差控制方法。该方法相对于传统的预测控制策略,更适合于追踪需求变化,减少或消除"牛鞭效应"。首先,将具有z变换的各单元传递函数整合成一个闭环传递函数,以此为整个供... 针对离散供应链系统中客户需求的高度不确定性,提出最小方差控制方法。该方法相对于传统的预测控制策略,更适合于追踪需求变化,减少或消除"牛鞭效应"。首先,将具有z变换的各单元传递函数整合成一个闭环传递函数,以此为整个供应链网络建模,采用自回归移动平均模型描述客户需求趋势,并通过客户需求预测确定两种库存目标水平。其次,建立基于订单策略的目标函数,利用最小方差预测器处理客户需求,提出了供应链的性能指标函数和"牛鞭效应"的分析方程,并通过设定最小方差控制器参数调节超额库存和未交付订货。最后,仿真结果表明最小方差控制在预测市场变化、追踪客户动态需求和保持合理库存水平上是可行和有效的。 展开更多
关键词 网络化制造 供应链系统 最小方差控制 自回归移动平均方法 牛鞭效应
下载PDF
高空作业平台广义预测自适应控制及联合仿真 被引量:1
5
作者 李帅 魏建华 《计算机应用研究》 CSCD 北大核心 2009年第10期3830-3832,共3页
为减少工程车辆控制系统开发周期和成本,以某型54m高空作业平台电液比例调平系统为研究对象,利用ADAMS软件建立作业机构多体动力学模型;采用AMESim软件建立电液比例调平系统模型;通过MAT-LAB/Simulink设计,采用改进的广义预测自适应控... 为减少工程车辆控制系统开发周期和成本,以某型54m高空作业平台电液比例调平系统为研究对象,利用ADAMS软件建立作业机构多体动力学模型;采用AMESim软件建立电液比例调平系统模型;通过MAT-LAB/Simulink设计,采用改进的广义预测自适应控制的闭环控制器;以AMESim作为主仿真环境,通过软件接口将多体动力学模型和控制系统模型集成到AMESim中进行联合仿真。仿真结果表明,闭环控制器较常规PID控制器具有良好的动态特性,对模型失配和负载扰动表现出更强的适应性和鲁棒性,同时也证明了联合仿真的有效性。 展开更多
关键词 高空作业平台 广义预测自适应控制 受控自回归滑动平均模型 联合仿真
下载PDF
基于PCA的ARFIMA-GARCH油价预测模型 被引量:2
6
作者 林盛 王文超 《价值工程》 2011年第27期102-104,共3页
在考察前人油价预测模型研究情况后,文章一方面,从油价序列长记忆性和异方差性着手,将ARFIMA模型和GARCH模型进行结合,构建ARFIMA-GARCH模型;另一方面,还对油价模型构建中的一大难题——影响因素的筛选进行适当探索,尝试结合主成分分析... 在考察前人油价预测模型研究情况后,文章一方面,从油价序列长记忆性和异方差性着手,将ARFIMA模型和GARCH模型进行结合,构建ARFIMA-GARCH模型;另一方面,还对油价模型构建中的一大难题——影响因素的筛选进行适当探索,尝试结合主成分分析,提取若干主成分,加入ARFIMA-GARCH模型中,形成基于PCA的ARFIMA-GARCH模型。在与其他模型进行比较好,发现基于PCA的ARFIMA-GARCH模型要好于其他模型,文章的研究和改进是有效的和成功的。 展开更多
关键词 主成分分析 广义自回归条件异方差模型 分整自回归移动平均模型
下载PDF
Spatial-temporal Analysis and Prediction of Precipitation Extremes: A Case Study in the Weihe River Basin, China 被引量:4
7
作者 QIU Dexun WU Changxue +2 位作者 MU Xingmin ZHAO Guangju GAO Peng 《Chinese Geographical Science》 SCIE CSCD 2022年第2期358-372,共15页
Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical f... Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical for the flood prevention and water resources planning and management.In this study,daily precipitation data(1957–2019)were collected from 24 meteorological stations in the Weihe River Basin(WRB),Northwest China and its surrounding areas.We first analyzed the spatial-temporal change of precipitation extremes in the WRB based on space-time cube(STC),and then predicted precipitation extremes using long short-term memory(LSTM)network,auto-regressive integrated moving average(ARIMA),and hybrid ensemble empirical mode decomposition(EEMD)-LSTM-ARIMA models.The precipitation extremes increased as the spatial variation from northwest to southeast of the WRB.There were two clusters for each extreme precipitation index,which were distributed in the northwestern and southeastern or northern and southern of the WRB.The precipitation extremes in the WRB present a strong clustering pattern.Spatially,the pattern of only high-high cluster and only low-low cluster were primarily located in lower reaches and upper reaches of the WRB,respectively.Hot spots(25.00%–50.00%)were more than cold spots(4.17%–25.00%)in the WRB.Cold spots were mainly concentrated in the northwestern part,while hot spots were mostly located in the eastern and southern parts.For different extreme precipitation indices,the performances of the different models were different.The accuracy ranking was EEMD-LSTM-ARIMA>LSTM>ARIMA in predicting simple daily intensity index(SDII)and consecutive wet days(CWD),while the accuracy ranking was LSTM>EEMD-LSTM-ARIMA>ARIMA in predicting very wet days(R95 P).The hybrid EEMD-LSTM-ARIMA model proposed was generally superior to single models in the prediction of precipitation extremes. 展开更多
关键词 precipitation extremes space-time cube(STC) ensemble empirical mode decomposition(EEMD) long short-term memory(LSTM) auto-regressive integrated moving average(ARIMA) Weihe River Basin China
下载PDF
Identifying Malaria Hotspots Regions in Ghana Using Bayesian Spatial and Spatiotemporal Models
8
作者 Abdul-Karim Iddrisu Dominic Otoo +4 位作者 Gordon Hinneh Yakubu Dekongmene Kanyiri Kanimam Yaaba Samuel Cecilia Kubio Francis Balungnaa Dhari Veriegh 《Infectious Diseases & Immunity》 CSCD 2024年第2期69-78,共10页
Background:Malaria remains a significant public health concern in Ghana,with varying risk levels across different geographical areas.Malaria affects millions of people each year and imposes a substantial burden on the... Background:Malaria remains a significant public health concern in Ghana,with varying risk levels across different geographical areas.Malaria affects millions of people each year and imposes a substantial burden on the health care system and population.Accurate risk estimation and mapping are crucial for effectively allocating resources and implementing targeted interventions to identify regions with disease hotspots.This study aimed to identify regions exhibiting elevated malaria risk so that public health interventions can be implemented,and to identify malaria risk predictors that can be controlled as part of public health interventions for malaria control.Methods:The data on laboratory-confirmed malaria cases from 2015 to 2021 were obtained from the Ghana Health Service and Ghana Statistical Service.We studied the spatial and spatiotemporal patterns of the relative risk of malaria using Bayesian spatial and spatiotemporal models.The malaria risk for each region was mapped to visually identify regions with malaria hotspots.Clustering and heterogeneity of disease risks were established using correlated and uncorrelated structures via the conditional autoregressive and Gaussian models,respectively.Parameter estimates from the marginal posterior distribution were estimated within the Integrated Nested Laplace Approximation using the R software.Results:The spatial model indicated an increased risk of malaria in the North East,Bono East,Ahafo,Central,Upper West,Brong Ahafo,Ashanti,and Eastern regions.The spatiotemporal model results highlighted an elevated malaria risk in the North East,Upper West,Upper East,Savannah,Bono East,Central,Bono,and Ahafo regions.Both spatial and spatiotemporal models identified the North East,Upper West,Bono East,Central,and Ahafo Regions as hotspots for malaria risk.Substantial variations in risk were evident across regions(H=104.9,P<0.001).Although climatic and economic factors influenced malaria infection,statistical significance was not established.Conclusions:Malaria risk was clustered and varied among regions in Ghana.There are many regions in Ghana that are hotspots for malaria risk,and climate and economic factors have no significant influence on malaria risk.This study could provide information on malaria transmission patterns in Ghana,and contribute to enhance the effectiveness of malaria control strategies. 展开更多
关键词 MALARIA Disease hotspot Bayesian modeling Conditional auto-regressive integrated Nested Laplace Approximation Spatial and spatiotemporal models
原文传递
基于ARIMA-NARNN组合模型的血吸虫感染率预测研究 被引量:8
9
作者 王克伟 吴郁 +1 位作者 李金平 蒋玉宇 《中国血吸虫病防治杂志》 CAS CSCD 北大核心 2016年第6期630-634,共5页
目的探讨ARIMA-NARNN组合模型预测血吸虫感染率的有效性。方法利用2005年1月至2015年2月江苏省血吸虫感染率资料分别建立ARIMA模型、NARNN模型和ARIMA-NARNN组合模型,比较各模型的拟合和预测效果。结果相比较ARIMA模型和NARNN模型,ARIMA... 目的探讨ARIMA-NARNN组合模型预测血吸虫感染率的有效性。方法利用2005年1月至2015年2月江苏省血吸虫感染率资料分别建立ARIMA模型、NARNN模型和ARIMA-NARNN组合模型,比较各模型的拟合和预测效果。结果相比较ARIMA模型和NARNN模型,ARIMA-NARNN组合模型预测样本的MSE、MAE和MAPE均最小,分别为0.011 1、0.090 0和0.282 4。结论 ARIMA-NARNN组合模型能有效模拟和预测血吸虫感染率,具有较好的推广应用价值。 展开更多
关键词 自回归滑动平均模型 非线性自回归神经网络 时间序列 血吸虫病 预测 AUTOREGRESSIVE integrated MOVING AVERAGE model (ARIMA) Nonlinear auto-regressive neural network (NARNN)
原文传递
自回归移动平均混合模型在中国道路交通伤害预测中的应用 被引量:6
10
作者 庞媛媛 张徐军 +2 位作者 涂志斌 崔梦晶 顾月 《中华流行病学杂志》 CAS CSCD 北大核心 2013年第7期736-739,共4页
探讨时间序列分析的自回归移动平均混合模型(ARIMA)在中国道路交通伤害(RTI)预测中的应用。收集1951—2011年中国道路交通伤害资料,进行时间序列分析,建立ARIMA模型。构建得到RTI事故起数ARIMA(1,1,0)预测模型为Yt=e^Yt-1+0.... 探讨时间序列分析的自回归移动平均混合模型(ARIMA)在中国道路交通伤害(RTI)预测中的应用。收集1951—2011年中国道路交通伤害资料,进行时间序列分析,建立ARIMA模型。构建得到RTI事故起数ARIMA(1,1,0)预测模型为Yt=e^Yt-1+0.456 Yt-1+et,其中et为随机误差,模型残差序列为白噪声,Ljung.Box检验P〉0.05,统计量无统计学意义,拟合效果良好。应用该模型预测2011年中国RTI事故起数,预测值与实际观测结果相符,实际观测值在预测值95%CI内。用该模型预测2012年中国RTI事故起数,预测值(95%凹)为207838(107579~401536)。应用ARIMA模型能较好地预测中国道路交通伤害情况。 展开更多
关键词 道路交通伤害 时间序列分析 自回归移动平均混合模型 预测
原文传递
宝鸡市肾综合征出血热流行特征及预测分析 被引量:9
11
作者 李红兵 何微 +1 位作者 王宏戈 田辉 《职业与健康》 CAS 2015年第5期639-641,共3页
目的了解2005—2013年宝鸡市肾综合征出血热(简称出血热)流行特征,并建立出血热发病预测模式。方法对宝鸡市2005—2013年的出血热疫情资料用描述流行病学方法进行统计分析,利用历史数据建立预测模型。结果 2005—2013年共报告出血热2 ... 目的了解2005—2013年宝鸡市肾综合征出血热(简称出血热)流行特征,并建立出血热发病预测模式。方法对宝鸡市2005—2013年的出血热疫情资料用描述流行病学方法进行统计分析,利用历史数据建立预测模型。结果 2005—2013年共报告出血热2 233例,年平均发病率为6.67/10万,病死率为0.54%,发病季节性特点明显。发病职业以农民为主(1 799例),占发病总数的88.54%,发病年龄以40~59岁年龄段最高(1 128例),占发病总数的50.52%,男女性别比为3∶1,自回归移动平均模型预测提示近年出血热发病可能仍处于高发水平。结论宝鸡市出血热发病进入一个发病周期,近年发病可能仍处于高发水平,应对重点地区、重点人群及时采取防控措施,自回归移动平均模型对预测宝鸡市出血热有一定的实用意义。 展开更多
关键词 肾综合征出血热 流行特征 自回归移动平均模型 预测
原文传递
Prediction of urban human mobility using large-scale taxi traces and its applications 被引量:49
12
作者 Xiaolong LI Gang PAN +5 位作者 Zhaohui WU Guande QI Shijian LI Daqing ZHANG Wangsheng ZHANG Zonghui WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2012年第1期111-121,共11页
This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) ... This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of passengers in a hotspot. Evaluation with a large-scale real- world data set of 4 000 taxis' GPS traces over one year shows a prediction error of only 5.8%. We also explore the applica- tion of the pl^di^fioti approach to help drivers find their next passetlgerS, The sinatllation results using historical real-world data demonstrate that, with our guidance, drivers can reduce the time taken and distance travelled, to find their next pas- senger+ by 37.1% and 6.4% respectively, 展开更多
关键词 urban traffic GPS traces HOTSPOTS human mo-bility prediction auto-regressive integrated moving average(ARiMA)
原文传递
A Hybrid Time-delay Prediction Method for Networked Control System 被引量:8
13
作者 Zhong-Da Tian Xian-Wen Gao Kun Li 《International Journal of Automation and computing》 EI CSCD 2014年第1期19-24,共6页
This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation com... This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation component and detail components of time-delay sequences are fgured out.Next,one step prediction of time-delay is obtained through echo state network(ESN)model and auto-regressive integrated moving average model(ARIMA)according to the diferent characteristics of approximate component and detail components.Then,the fnal predictive value of time-delay is obtained by summation.Meanwhile,the parameters of echo state network is optimized by genetic algorithm.The simulation results indicate that higher accuracy can be achieved through this prediction method. 展开更多
关键词 Networked control system wavelet transform auto-regressive integrated moving average model echo state network genetic algorithm time-delay prediction
原文传递
Dam deformation analysis based on BPNN merging models 被引量:1
14
作者 Jingui Zou Kien-Trinh Thi Bui +1 位作者 Yangxuan Xiao Chinh Van Doan 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期149-157,共9页
Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizont... Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizontal displacement is analyzed and then forecasted using three methods:the multi-regression model,the seasonal integrated auto-regressive moving average(SARIMA)model and the back-propagation neural network(BPNN)merging models.The monitoring data of the Hoa Binh Dam in Vietnam,including horizontal displacement,time,reservoir water level,and air temperature,are used for the experiments.The results indicate that all of these three methods can approximately describe the trend of dam deformation despite their different forecast accuracies.Hence,their short-term forecasts can provide valuable references for the dam safety. 展开更多
关键词 Dam deformation analysis multi-regression model Back-propagation Neural Network(BPNN) Seasonal integrated auto-regressive Moving Average(SARIMA)model merging model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部