The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and ...The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.展开更多
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ...Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.展开更多
The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unload...The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and...In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.展开更多
AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated en...AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated endothelial keratoplasty(DSAEK).METHODS:This retrospective study on observational case series enrolled 29 patients who underwent DSAEK and posterior anti-glaucoma surgery(15 with GDI and 14 with CPC).The main outcome measures were intraocular pressure(IOP),glaucoma surgery success rate(defined as IOP of 6–21 mm Hg without additional anti-glaucoma operation),number of glaucoma medications,endothelial graft status,and best-corrected visual acuity(BCVA).RESULTS:The mean follow-up time was 34.1 and 21.0mo for DSAEK or glaucoma surgeries,both for the GDI and CPC groups.Both groups showed significant IOP reduction after glaucoma surgery.The GDI group presented a significantly higher success rate in IOP control than the CPC group(60%vs 21.4%,P=0.03).Both procedures significantly decreased the number of glaucoma medications(P=0.03).Forty percent and 57%of cases in the GDI and the CPC group,respectively,experienced endothelial graft failure during follow-up(P=0.36).Significantly worse BCVA after surgery was observed in the CPC group but not in the GDI group.CONCLUSION:Both GDI and CPC significantly decrease IOP in eyes with glaucoma after DSAEK.GDI is preferable to CPC in refractory glaucoma cases after DSAEK,as it manifests a significantly higher success rate for IOP control,similar endothelial graft failure rate,and relatively preserves BCVA than CPC.展开更多
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ...Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance.展开更多
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin...Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.展开更多
As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path pla...As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality.展开更多
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing...Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model.展开更多
BACKGROUND Spontaneous bacterial peritonitis(SBP)is one of the most important complications of patients with liver cirrhosis entailing high morbidity and mortality.Making an accurate early diagnosis of this infection ...BACKGROUND Spontaneous bacterial peritonitis(SBP)is one of the most important complications of patients with liver cirrhosis entailing high morbidity and mortality.Making an accurate early diagnosis of this infection is key in the outcome of these patients.The current definition of SBP is based on studies performed more than 40 years ago using a manual technique to count the number of polymorphs in ascitic fluid(AF).There is a lack of data comparing the traditional cell count method with a current automated cell counter.Moreover,current international guidelines do not mention the type of cell count method to be employed and around half of the centers still rely on the traditional manual method.AIM To compare the accuracy of polymorph count on AF to diagnose SBP between the traditional manual cell count method and a modern automated cell counter against SBP cases fulfilling gold standard criteria:Positive AF culture and signs/symptoms of peritonitis.METHODS Retrospective analysis including two cohorts:Cross-sectional(cohort 1)and case-control(cohort 2),of patients with decompensated cirrhosis and ascites.Both cell count methods were conducted simultaneously.Positive SBP cases had a pathogenic bacteria isolated on AF and signs/symptoms of peritonitis.RESULTS A total of 137 cases with 5 positive-SBP,and 85 cases with 33 positive-SBP were included in cohort 1 and 2,respectively.Positive-SBP cases had worse liver function in both cohorts.The automated method showed higher sensitivity than the manual cell count:80%vs 52%,P=0.02,in cohort 2.Both methods showed very good specificity(>95%).The best cutoff using the automated cell counter was polymorph≥0.2 cells×10^(9)/L(equivalent to 200 cells/mm^(3))in AF as it has the higher sensitivity keeping a good specificity.CONCLUSION The automated cell count method should be preferred over the manual method to diagnose SBP because of its higher sensitivity.SBP definition,using the automated method,as polymorph cell count≥0.2 cells×10^(9)/L in AF would need to be considered in patients admitted with decompensated cirrhosis.展开更多
In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological ...In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.展开更多
As the number of single-cell datasets continues to grow rapidly,workflows that map new data to well-curated reference atlases offer enormous promise for the biological community.In this perspective,we discuss key comp...As the number of single-cell datasets continues to grow rapidly,workflows that map new data to well-curated reference atlases offer enormous promise for the biological community.In this perspective,we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms.We discuss how mapping algorithms will enable the integration of diverse datasets across disease states,molecular modalities,genetic perturbations,and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.展开更多
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof...This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.展开更多
The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on trad...The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.展开更多
To enhance the practicability of the trust negotiation system, an agent based automated trust negotiation model (ABAM) is proposed. The ABAM introduces an agent to keep the negotiation process with no human interven...To enhance the practicability of the trust negotiation system, an agent based automated trust negotiation model (ABAM) is proposed. The ABAM introduces an agent to keep the negotiation process with no human intervention. Meanwhile, the ABAM specifies the format of a meta access control policy, and adopts credentials with flexible format to meet the requirements of access control policies instead of disclosing the whole contents of a certificate. Furthermore, the ABAM uses asymmetric functions with a high security intensity to encrypt the transmitting message, which can prevent information from being attacked. Finally, the ABAM presents a new negotiation protocol to guide the negotiation process. A use case is studied to illuminate that the ABAM is sound and reasonable. Compared with the existing work, the intelligence, privacy and negotiation efficiency are improved in the ABAM.展开更多
文摘The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.
基金supported by the National Natural Science Foundation of China(51875061)China Scholarship Council(202206050107)。
文摘Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.
文摘The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
文摘In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
文摘AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated endothelial keratoplasty(DSAEK).METHODS:This retrospective study on observational case series enrolled 29 patients who underwent DSAEK and posterior anti-glaucoma surgery(15 with GDI and 14 with CPC).The main outcome measures were intraocular pressure(IOP),glaucoma surgery success rate(defined as IOP of 6–21 mm Hg without additional anti-glaucoma operation),number of glaucoma medications,endothelial graft status,and best-corrected visual acuity(BCVA).RESULTS:The mean follow-up time was 34.1 and 21.0mo for DSAEK or glaucoma surgeries,both for the GDI and CPC groups.Both groups showed significant IOP reduction after glaucoma surgery.The GDI group presented a significantly higher success rate in IOP control than the CPC group(60%vs 21.4%,P=0.03).Both procedures significantly decreased the number of glaucoma medications(P=0.03).Forty percent and 57%of cases in the GDI and the CPC group,respectively,experienced endothelial graft failure during follow-up(P=0.36).Significantly worse BCVA after surgery was observed in the CPC group but not in the GDI group.CONCLUSION:Both GDI and CPC significantly decrease IOP in eyes with glaucoma after DSAEK.GDI is preferable to CPC in refractory glaucoma cases after DSAEK,as it manifests a significantly higher success rate for IOP control,similar endothelial graft failure rate,and relatively preserves BCVA than CPC.
文摘Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance.
基金supported by the State Administration of Science,Technology and Industry for National Defence,PRC(KJSP2020020303)the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ2021-12)。
文摘Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.
基金supported by National Natural Science Foundation of China(No.62073212)Shanghai Science and Technology Commission(No.23ZR1426600).
文摘As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality.
基金Macao Polytechnic University Grant(RP/FCSD-01/2022RP/FCA-05/2022)Science and Technology Development Fund of Macao(0105/2022/A).
文摘Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model.
文摘BACKGROUND Spontaneous bacterial peritonitis(SBP)is one of the most important complications of patients with liver cirrhosis entailing high morbidity and mortality.Making an accurate early diagnosis of this infection is key in the outcome of these patients.The current definition of SBP is based on studies performed more than 40 years ago using a manual technique to count the number of polymorphs in ascitic fluid(AF).There is a lack of data comparing the traditional cell count method with a current automated cell counter.Moreover,current international guidelines do not mention the type of cell count method to be employed and around half of the centers still rely on the traditional manual method.AIM To compare the accuracy of polymorph count on AF to diagnose SBP between the traditional manual cell count method and a modern automated cell counter against SBP cases fulfilling gold standard criteria:Positive AF culture and signs/symptoms of peritonitis.METHODS Retrospective analysis including two cohorts:Cross-sectional(cohort 1)and case-control(cohort 2),of patients with decompensated cirrhosis and ascites.Both cell count methods were conducted simultaneously.Positive SBP cases had a pathogenic bacteria isolated on AF and signs/symptoms of peritonitis.RESULTS A total of 137 cases with 5 positive-SBP,and 85 cases with 33 positive-SBP were included in cohort 1 and 2,respectively.Positive-SBP cases had worse liver function in both cohorts.The automated method showed higher sensitivity than the manual cell count:80%vs 52%,P=0.02,in cohort 2.Both methods showed very good specificity(>95%).The best cutoff using the automated cell counter was polymorph≥0.2 cells×10^(9)/L(equivalent to 200 cells/mm^(3))in AF as it has the higher sensitivity keeping a good specificity.CONCLUSION The automated cell count method should be preferred over the manual method to diagnose SBP because of its higher sensitivity.SBP definition,using the automated method,as polymorph cell count≥0.2 cells×10^(9)/L in AF would need to be considered in patients admitted with decompensated cirrhosis.
文摘In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.
文摘As the number of single-cell datasets continues to grow rapidly,workflows that map new data to well-curated reference atlases offer enormous promise for the biological community.In this perspective,we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms.We discuss how mapping algorithms will enable the integration of diverse datasets across disease states,molecular modalities,genetic perturbations,and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.
基金This work is the result of commissioned research project supported by the Affiliated Institute of ETRI(2022-086)received by Junho AhnThis research was supported by the National Research Foundation of Korea(NRF)Basic Science Research Program funded by the Ministry of Education(No.2020R1A6A1A03040583)this work was supported by Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0008691,HRD Program for Industrial Innovation).
文摘This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
文摘The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.
基金The National Natural Science Foundation of China(No60403027)
文摘To enhance the practicability of the trust negotiation system, an agent based automated trust negotiation model (ABAM) is proposed. The ABAM introduces an agent to keep the negotiation process with no human intervention. Meanwhile, the ABAM specifies the format of a meta access control policy, and adopts credentials with flexible format to meet the requirements of access control policies instead of disclosing the whole contents of a certificate. Furthermore, the ABAM uses asymmetric functions with a high security intensity to encrypt the transmitting message, which can prevent information from being attacked. Finally, the ABAM presents a new negotiation protocol to guide the negotiation process. A use case is studied to illuminate that the ABAM is sound and reasonable. Compared with the existing work, the intelligence, privacy and negotiation efficiency are improved in the ABAM.