A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-...A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.展开更多
The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weat...The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.展开更多
基于1979-2012年共34年的 ECMWF 逐日4次平均海平面气压的再分析资料,采用英国雷丁大学气旋客观追踪算法,对出现在我国近海的温带气旋(气旋生命史1 d 以上,移动距离大于500 km)的时空分布特征进行统计分析。结论包括以下几点:(1...基于1979-2012年共34年的 ECMWF 逐日4次平均海平面气压的再分析资料,采用英国雷丁大学气旋客观追踪算法,对出现在我国近海的温带气旋(气旋生命史1 d 以上,移动距离大于500 km)的时空分布特征进行统计分析。结论包括以下几点:(1)1979-2012年进入中国近海的温带气旋平均每年45个,气旋数量呈现春夏多而秋冬少的特点。20世纪90年代初至今,气旋数量呈增加趋势,其中北部海区气旋数量增加达到显著水平,东部海区气旋数量表现为不显著减少,故认为影响中国近海的气旋路径有北移的趋势。(2)进入我国近海的温带气旋主要有4个生成源地,按比例由高到低分别是江淮气旋(38.9%),东海气旋(25.2%),黄河气旋(24.3%)以及蒙古气旋(11.6%)。气旋入海后,当大气海洋条件适合时,可以爆发性增长,气旋爆发性增长的主要区域在朝鲜半岛及以东洋面以及日本以东洋面,在我国近海气旋爆发的比例较小。(3)气旋生命史主要为1~7 d,但生命史为1~4 d 的气旋比例最大,平均占气旋总数的52%,其中夏季长生命史气旋(大于10 d)的比例最大,为8%,冬季最少,接近3%。冬季气旋最强,气压分布区间大;夏季弱气旋多,中心气压分布集中。展开更多
从江淮气旋的定义出发,采用欧洲中期天气预报中心的ERA-Interim再分析资料,运用气旋的客观判定与追踪算法追踪江淮气旋,分析了1979-2010年江淮气旋的气候特征。结果表明:江淮气旋发生的频数有显著的年际变化,但随时间变化的长期趋势并...从江淮气旋的定义出发,采用欧洲中期天气预报中心的ERA-Interim再分析资料,运用气旋的客观判定与追踪算法追踪江淮气旋,分析了1979-2010年江淮气旋的气候特征。结果表明:江淮气旋发生的频数有显著的年际变化,但随时间变化的长期趋势并不明显。由于春季冷空气活动频繁,且易与副高西南侧气流汇合形成气旋,因此春季是江淮气旋最活跃的季节,其中5月份江淮气旋发生次数最多;而在冬季,东亚地区受大陆冷高压控制,形势稳定,不易形成气旋,故秋冬季江淮气旋出现较少。受地形和下垫面等因素影响,江淮气旋生成的源地主要位于洞庭湖地区、鄱阳湖地区及大别山区东北侧。43.9%的江淮气旋中心平均降压率为0^-1 h Pa/6h,大多数江淮气旋中心最大降压率为0^-2 h Pa/6h(占66.4%),较难形成暴发性气旋。江淮气旋生命史较短,主要为1~2天。展开更多
A climatology of extratropical cyclones (ECs) over East Asia (20~ 75~N, 60^-160~E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from ...A climatology of extratropical cyclones (ECs) over East Asia (20~ 75~N, 60^-160~E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data. A total of 12914 EC processes for the period of 1958-2001 are identified, with an EC database integrated and EC activities reanalyzed using the objective algorithm. The results reveal that there are three major cyclogenesis regions: West Siberian Plain, Mongolia (to the south of Lake Baikal), and the coastal region of East China; whereas significant cyclolysis regions are observed in Siberia north of 60~N, Northeast China, and Okhotsk Se^Northwest Pacific. It is found that the EC lifetime is largely 1 7 days while winter ECs have the shortest lifespan. The ECs are the weakest in summer among the four seasons. Strong ECs often appear in West Siberia, Northeast China, and Okhotsk Sea-Northwest Pacific. Statistical analysis based on k-means clustering has identified 6 dominating trajectories in the area south of 55~N and east of 80~E, among which 4 tracks have important impacts on weather/climate in China. ECs occurring in spring (summer) tend to travel the longest (shortest). They move the fastest in winter, and the slowest in summer. In winter, cyclones move fast in Northeast China, some areas of the Yangtze-Huaihe River region, and the south of Japan, with speed greater than 15 m s-1. Explosively-deepening cyclones are found to occur frequently along the east coast of China, Japan, and Northwest Pacific, but very few storms occur over the inland area. Bombs prefer to occur in winter, spring, and autumn. Their annual number and intensity in 1990 and 1992 in East Asia (EA) are smaller and weaker than their counterparts in North America.展开更多
基金The National Natural Science Foundation of China under contract No.41206186the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2015-04-03
文摘A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2016-04-03the National Key Research and Development Program of China under contract No.2016YFC1402701
文摘The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.
文摘基于1979-2012年共34年的 ECMWF 逐日4次平均海平面气压的再分析资料,采用英国雷丁大学气旋客观追踪算法,对出现在我国近海的温带气旋(气旋生命史1 d 以上,移动距离大于500 km)的时空分布特征进行统计分析。结论包括以下几点:(1)1979-2012年进入中国近海的温带气旋平均每年45个,气旋数量呈现春夏多而秋冬少的特点。20世纪90年代初至今,气旋数量呈增加趋势,其中北部海区气旋数量增加达到显著水平,东部海区气旋数量表现为不显著减少,故认为影响中国近海的气旋路径有北移的趋势。(2)进入我国近海的温带气旋主要有4个生成源地,按比例由高到低分别是江淮气旋(38.9%),东海气旋(25.2%),黄河气旋(24.3%)以及蒙古气旋(11.6%)。气旋入海后,当大气海洋条件适合时,可以爆发性增长,气旋爆发性增长的主要区域在朝鲜半岛及以东洋面以及日本以东洋面,在我国近海气旋爆发的比例较小。(3)气旋生命史主要为1~7 d,但生命史为1~4 d 的气旋比例最大,平均占气旋总数的52%,其中夏季长生命史气旋(大于10 d)的比例最大,为8%,冬季最少,接近3%。冬季气旋最强,气压分布区间大;夏季弱气旋多,中心气压分布集中。
文摘从江淮气旋的定义出发,采用欧洲中期天气预报中心的ERA-Interim再分析资料,运用气旋的客观判定与追踪算法追踪江淮气旋,分析了1979-2010年江淮气旋的气候特征。结果表明:江淮气旋发生的频数有显著的年际变化,但随时间变化的长期趋势并不明显。由于春季冷空气活动频繁,且易与副高西南侧气流汇合形成气旋,因此春季是江淮气旋最活跃的季节,其中5月份江淮气旋发生次数最多;而在冬季,东亚地区受大陆冷高压控制,形势稳定,不易形成气旋,故秋冬季江淮气旋出现较少。受地形和下垫面等因素影响,江淮气旋生成的源地主要位于洞庭湖地区、鄱阳湖地区及大别山区东北侧。43.9%的江淮气旋中心平均降压率为0^-1 h Pa/6h,大多数江淮气旋中心最大降压率为0^-2 h Pa/6h(占66.4%),较难形成暴发性气旋。江淮气旋生命史较短,主要为1~2天。
基金Supported by the National Science and Technology Support Program of China (2007BAC03A01 and 2009BAC51B01)
文摘A climatology of extratropical cyclones (ECs) over East Asia (20~ 75~N, 60^-160~E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data. A total of 12914 EC processes for the period of 1958-2001 are identified, with an EC database integrated and EC activities reanalyzed using the objective algorithm. The results reveal that there are three major cyclogenesis regions: West Siberian Plain, Mongolia (to the south of Lake Baikal), and the coastal region of East China; whereas significant cyclolysis regions are observed in Siberia north of 60~N, Northeast China, and Okhotsk Se^Northwest Pacific. It is found that the EC lifetime is largely 1 7 days while winter ECs have the shortest lifespan. The ECs are the weakest in summer among the four seasons. Strong ECs often appear in West Siberia, Northeast China, and Okhotsk Sea-Northwest Pacific. Statistical analysis based on k-means clustering has identified 6 dominating trajectories in the area south of 55~N and east of 80~E, among which 4 tracks have important impacts on weather/climate in China. ECs occurring in spring (summer) tend to travel the longest (shortest). They move the fastest in winter, and the slowest in summer. In winter, cyclones move fast in Northeast China, some areas of the Yangtze-Huaihe River region, and the south of Japan, with speed greater than 15 m s-1. Explosively-deepening cyclones are found to occur frequently along the east coast of China, Japan, and Northwest Pacific, but very few storms occur over the inland area. Bombs prefer to occur in winter, spring, and autumn. Their annual number and intensity in 1990 and 1992 in East Asia (EA) are smaller and weaker than their counterparts in North America.