In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function w...In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.展开更多
In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dyna...In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.展开更多
Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forw...Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly. Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
基金Supported by the National Natural Science Foundation of China(51375053)
文摘In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.
基金Supported by the National Natural Science Foundation of China ( 51205209)
文摘In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.
文摘Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly. Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
文摘结合电动车辆的结构形式及其工作原理,研究了适用于电动车辆AMT(automated mechanical transmission)换挡过程的驱动电机控制策略,实现了AMT正常换挡.分析了制动状态下电机回馈制动力矩对AMT换挡的影响,提出了制动状态下AMT换挡时驱动电机控制策略.在纯电动环卫车上进行实车调试,结果表明,该控制策略可行,整个换挡时间约为1 s.