Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact A...Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.展开更多
The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle a...The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the presence of a gravitational field is also considered. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism by geometry, if applied to the extended phase space. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model. Electrodynamics becomes non local, without the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the presence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The gyrocenter law of motion is the Schrödinger equation.展开更多
为解决结构大震后残余变形过大以及复位索体预应力损失的问题,提出了一种具有耗能及复位功能的装配式零初始索力摩擦耗能复位支撑.对该支撑的工作机理、恢复力模型进行了理论推导,应用ABAQUS有限元软件对其力学性能进行了模拟分析,并将...为解决结构大震后残余变形过大以及复位索体预应力损失的问题,提出了一种具有耗能及复位功能的装配式零初始索力摩擦耗能复位支撑.对该支撑的工作机理、恢复力模型进行了理论推导,应用ABAQUS有限元软件对其力学性能进行了模拟分析,并将理论推导、有限元模拟与试验分析得到的结果进行了对比.结果表明:利用理论推导、有限元模拟及试验分析得到的滞回曲线吻合较好,加载过程中该支撑无刚度退化现象,索体内力呈线性变化,无内力损失,说明该支撑采用2组初始索力为0 k N的索体交替受力构造,可以有效地避免索体的预应力损失问题;该支撑滞回曲线饱满,耗能规律稳定,表明黄铜-槽孔钢摩擦板耗能器可以提供稳定的耗能能力;该支撑卸载至位移零点时,理论推导、试验分析及有限元模拟得到的残余荷载分别为0,-0.12,0 k N,说明该支撑具有良好的复位能力.展开更多
基金supported by the Grant-in-Aid for Young Scientists(B)Project(Grant No.24700716)funded by the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.
基金This work has been carried out within the framework of the Nonlinear Energetic Particle Dy-namics(NLED)European Enabling Research Project,WP 15-ER-01/ENEA-03,within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
文摘The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the presence of a gravitational field is also considered. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism by geometry, if applied to the extended phase space. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model. Electrodynamics becomes non local, without the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the presence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The gyrocenter law of motion is the Schrödinger equation.
文摘为解决结构大震后残余变形过大以及复位索体预应力损失的问题,提出了一种具有耗能及复位功能的装配式零初始索力摩擦耗能复位支撑.对该支撑的工作机理、恢复力模型进行了理论推导,应用ABAQUS有限元软件对其力学性能进行了模拟分析,并将理论推导、有限元模拟与试验分析得到的结果进行了对比.结果表明:利用理论推导、有限元模拟及试验分析得到的滞回曲线吻合较好,加载过程中该支撑无刚度退化现象,索体内力呈线性变化,无内力损失,说明该支撑采用2组初始索力为0 k N的索体交替受力构造,可以有效地避免索体的预应力损失问题;该支撑滞回曲线饱满,耗能规律稳定,表明黄铜-槽孔钢摩擦板耗能器可以提供稳定的耗能能力;该支撑卸载至位移零点时,理论推导、试验分析及有限元模拟得到的残余荷载分别为0,-0.12,0 k N,说明该支撑具有良好的复位能力.