期刊文献+
共找到1,176篇文章
< 1 2 59 >
每页显示 20 50 100
A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification 被引量:2
1
作者 Shanchuan Ying Sai Huang +3 位作者 Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo 《China Communications》 SCIE CSCD 2023年第5期135-147,共13页
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat... Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models. 展开更多
关键词 automatic modulation classification deep neural network convolutional neural network transformer
下载PDF
基于改进Swin Transformer的膝骨关节炎X光影像自动诊断
2
作者 许超 王云健 +2 位作者 刘洋 卢雪梅 丁勇 《电子测量技术》 北大核心 2024年第19期155-163,共9页
膝骨关节炎是老年人群体的常见疾病,具有较高的致残性。依托深度学习算法开展膝骨关节炎的自动诊断,具有重要的应用价值。为此,提出了一种基于改进Swin Transformer模型的膝骨关节炎X光影像自动诊断算法。通过两层全连接层加ReLU激活函... 膝骨关节炎是老年人群体的常见疾病,具有较高的致残性。依托深度学习算法开展膝骨关节炎的自动诊断,具有重要的应用价值。为此,提出了一种基于改进Swin Transformer模型的膝骨关节炎X光影像自动诊断算法。通过两层全连接层加ReLU激活函数的结构替换颈部网络的全局平均池化层,对迁移学习进行保护;在头部网络中添加全连接层与Tanh激活函数,组合出更多非线性特征;在数据预处理和模型训练过程中,分别依托Albumentations库和添加Mixup模块以此实现数据增强处理。实验结果表明,所提算法能够有效提升膝骨关节炎X光影像的分类精度,在Kaggle网站的公开数据集上诊断精度达到76.0%;同时,经过在其他膝骨关节炎X光影像数据集与不同领域的医学影像数据集上进行泛化实验,结果表明其具有较好的泛化能力,进一步证明所提算法的有效性。 展开更多
关键词 膝骨关节炎 Swin transformer 全局平均池化 数据增强
下载PDF
基于多层级视频Transformer的视觉自动定位方法
3
作者 邹琦萍 李博涛 +2 位作者 陈赛安 郭茜 张桃红 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期34-43,共10页
工业自动化产线中,设备的异常检测直接决定加工质量,由机械臂和搭载于机械臂前端的工业相机构成的视觉系统可以有效监测此类异常。本文使用六轴机械臂搭载工业相机对工件表面进行成像,获取由模糊到清晰再到模糊的视频序列,以此选出最清... 工业自动化产线中,设备的异常检测直接决定加工质量,由机械臂和搭载于机械臂前端的工业相机构成的视觉系统可以有效监测此类异常。本文使用六轴机械臂搭载工业相机对工件表面进行成像,获取由模糊到清晰再到模糊的视频序列,以此选出最清晰的视频帧作为自动加工中有聚焦要求的距离指导,以进行聚焦异常修正,从而实现自动定位。提出一种基于多层级视频Transformer的视频分类模型多级视频Transformer(MLVT)用于高语义级别的视频表征学习,并用于选出视频序列中成像最清晰的帧。首先,提出一种具有多种感受野的token划分方法多级标记(MLT),能够将原始视频数据按2D图像补丁、3D图像补丁、帧和片段这4个层级划分成token序列,并在加入位置编码之后送入多级编码器(MLE)方法进行注意力的计算。为了缓解多层级的tokens带来的计算代价和收敛速度慢的问题,MLE引入一种逐层的可变形注意力机制逐层可变形注意力机制(LWLA),以一种可学习的方式代替全局注意力进行特征相似性的计算。最终,该方法3个版本的模型在本文的视频数据集上分别取得了87.2%、88.6%、88.9%的分类准确率,在与同参数量级的主流视频Transformer实验对比中均表现了最优的性能,有效地完成了从视频序列中选择出最清晰帧的任务,能够为下游视觉任务的性能提供强有力保障。 展开更多
关键词 视频transformer 视频分类 视觉自动定位 可变形注意力
下载PDF
基于CNN-Transformer的自动泊车车位感知算法
4
作者 王玉龙 翁茂楠 +1 位作者 黄辉 覃小艺 《汽车技术》 CSCD 北大核心 2024年第8期1-6,共6页
为提高自动泊车成功率及准确性,首先基于卷积神经网络(CNN)模型对输入图像进行特征提取,然后利用Transfomer模型的“编码-解码”机制对CNN提取到的图像特征平铺后进行计算推理,通过前馈神经网络得到目标预测结果,最后基于180°广角... 为提高自动泊车成功率及准确性,首先基于卷积神经网络(CNN)模型对输入图像进行特征提取,然后利用Transfomer模型的“编码-解码”机制对CNN提取到的图像特征平铺后进行计算推理,通过前馈神经网络得到目标预测结果,最后基于180°广角鱼眼图像进行推理识别,车位角中心点和空车位入口中心点均采用二维坐标表示,降低了输出信息的冗余,优化了模型结构。测试结果表明,该算法能够较好地适应不同车位线划线方式和不同的自然环境,目标感知的召回率达到98%,车位角中心点定位平均误差小于3 cm,满足泊车系统对车位感知的鲁棒性、实时性和准确性要求。 展开更多
关键词 自动泊车 车位检测 视觉增强 卷积神经网络 transformer
下载PDF
一种基于Transformer模型的特征增强算法及其应用研究
5
作者 李俊华 段志奎 于昕梅 《佛山科学技术学院学报(自然科学版)》 CAS 2024年第3期27-34,共8页
Transformer模型在自动语音识别(ASR)任务中展现出优秀的性能,但在特征提取方面存在两个问题:一是模型集中于全局特征交互信息提取,忽略了其他有用的特征信息,如局部特征交互信息;二是模型对低层特征交互信息的利用不够充分。为了解决... Transformer模型在自动语音识别(ASR)任务中展现出优秀的性能,但在特征提取方面存在两个问题:一是模型集中于全局特征交互信息提取,忽略了其他有用的特征信息,如局部特征交互信息;二是模型对低层特征交互信息的利用不够充分。为了解决这两个问题,提出了卷积线性映射(CMLP)模块以强化局部特征交互,并设计低层特征融合(LF)模块来融合高低层特征。通过整合这些模块,构建了CLformer模型。在两个中文普通话数据集(Aishell-1和HKUST)上进行实验,结果表明,CLformer显著提升了模型性能,在Aishell-1上较基线提高0.3%,在HKUST上提高0.5%。 展开更多
关键词 transformer模型 自动语音识别 特征增强 局部特征 特征融合
下载PDF
A New Algorithm for Automatic Double Bright Fringe of Multiple-Beam Fizeau Fringe Skeletonization Using Fourier Transform Method of Fringe Pattern Analysis
6
作者 Mohamed A. EL-Morsy 《Journal of Signal and Information Processing》 2012年第3期412-419,共8页
The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determ... The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determine the dispersion curve of the fiber sample. A common problem in any interferogram analysis is the accuracy in locating fringe centers (fringe skeleton). There are a lot of computer-aided algorithms, which depend on the interferogram types, used to fringe skeleton extraction of various digital interferogram. In this paper, as far as I know, a novel algorithm for fringe skeleton extraction of double bright fringe of multiple-beam Fizeau fringe is presented. The proposed algorithm based on using the different order of Fourier transform and the derivative-sign binary image. Also the proposed algorithm has been successfully tested by using a computer simulation fringe and an experimental pattern. The results are compared with the original interferogram and shown a good agreement. 展开更多
关键词 automatic FRINGE Analysis Multiple-Beam Fizeau FRINGE FOURIER transform
下载PDF
An Arabic Transformation Based Approach to Automatic Paraphrasing of Syntactic Sentences
7
作者 Ali Boulaalam Azeddine Rhazi 《Sino-US English Teaching》 2021年第6期137-146,共10页
The aim of this paper is to exploit the existing Lexicon-Grammar(LG)tables,as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing.These operations includ... The aim of this paper is to exploit the existing Lexicon-Grammar(LG)tables,as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing.These operations include multiple processes at the lexical,morpho-syntactic,and semantic levels.Our proposal is to model highly productive phenomena of the Arabic language,such as pronominalization and passivization,dedicated to the both Arabic verb classes and Multiword Expressions(MWEs),in order to formalize the relation between structures and their semantic properties and thus to represent the symmetry and pairs between sentences that share a predicate that links the noun and a support verb.Furthermore,the automatic process of paraphrasing involves both the distributional and transformative features of each class of verbs or other structures such as Arabic MWEs.This research in progress outlines how to build Lexicon-Grammar tables for Arabic syntactic sentences by using automatic paraphrasing in a large transformational grammar on the one hand,and to implement it into both NooJ electronic dictionaries and local grammars on the other hand. 展开更多
关键词 Lexicon-Grammar transformATION automatic paraphrasing ARABIC NOMINALIZATION passivization NooJ
下载PDF
基于Transformer的多车交互场景车辆轨迹预测
8
作者 周亦威 区卓挥 邓歆乐 《农业装备与车辆工程》 2024年第5期136-139,144,共5页
车辆轨迹预测是自动驾驶中的关键技术,对于提高自动驾驶车辆路径规划功能的安全性有重要意义。对变道场景中多辆车的历史车辆轨迹进行建模,基于NGSIM数据集提取场景样本,并构建基于注意力机制的Transformer编码器-解码器模型,通过捕捉... 车辆轨迹预测是自动驾驶中的关键技术,对于提高自动驾驶车辆路径规划功能的安全性有重要意义。对变道场景中多辆车的历史车辆轨迹进行建模,基于NGSIM数据集提取场景样本,并构建基于注意力机制的Transformer编码器-解码器模型,通过捕捉轨迹之间的潜在关系,采用递归式方法生成对应的预测轨迹。实验表明,Transformer模型能更好捕捉相邻轨迹之间的时空交互特征,在复杂轨迹预测任务上呈现较优的预测结果。 展开更多
关键词 transformer 多车交互 轨迹预测 自动驾驶
下载PDF
基于Transformer编码器的合成语声检测系统
9
作者 万伊 杨飞然 杨军 《应用声学》 CSCD 北大核心 2023年第1期26-33,共8页
自动说话人认证系统是一种常用的目标说话人身份认证方案,但它在合成语声的攻击下表现出脆弱性,合成语声检测系统试图解决这一问题。该文提出了一种基于Transformer编码器的合成语声检测方法,利用自注意力机制学习输入特征内部的长期依... 自动说话人认证系统是一种常用的目标说话人身份认证方案,但它在合成语声的攻击下表现出脆弱性,合成语声检测系统试图解决这一问题。该文提出了一种基于Transformer编码器的合成语声检测方法,利用自注意力机制学习输入特征内部的长期依赖关系。合成语声检测问题并不关注句子的抽象语义特征,用参数量较小的模型也能得到较好的检测性能。该文分别测试了4种常用合成语声检测特征在Transformer编码器上的表现,在国际标准的ASVspoof2019挑战赛的逻辑攻击数据集上,基于线性频率倒谱系数特征和Transformer编码器的系统等错误率与串联检测代价函数分别为3.13%和0.0708,且模型参数量仅为0.082 M,在较小参数量下得到了较好的检测性能。 展开更多
关键词 自动说话人认证 合成语声检测 transformer编码器
下载PDF
AUTOMATIC SEARCHING OF CONTROL POINT IN NOAA AVHRR IMAGE
10
作者 Shu Ning Shi Huaxiang 《Geo-Spatial Information Science》 1999年第1期26-29,67,共5页
This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformatio... This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established. 展开更多
关键词 control point database automatical SEARCHING grid IMAGE VEGETATION index transformation MULTI-LEVEL matching NOAA AVHRR IMAGE
下载PDF
基于DFCNN-CTC和Transformer的中文语音识别
11
作者 杨璐 郭文明 韩芳 《火力与指挥控制》 CSCD 北大核心 2022年第3期16-21,共6页
语音识别一般只是将语音转化成文字,识别的结果是没有标点的一连串汉字,这不利于读者阅读,也会影响后续任务的处理。因此,引入语音端点检测解决上述问题。同时针对传统的语言模型N-gram存在忽略字词之间语义的相似性、训练时的参数过大... 语音识别一般只是将语音转化成文字,识别的结果是没有标点的一连串汉字,这不利于读者阅读,也会影响后续任务的处理。因此,引入语音端点检测解决上述问题。同时针对传统的语言模型N-gram存在忽略字词之间语义的相似性、训练时的参数过大等问题,提出一种以全序列卷积神经网络DFCNN作为声学模型,Transformer作为语言模型的语音识别系统。在Thchs30、ST-CMDS数据集上的实验表明,相较于DFCNN结合3-gram模型,该系统在最优模型上达到了12.8%的字符错误率,相对下降了6.9%。 展开更多
关键词 语音识别 语音端点检测 DFCNN transformer
下载PDF
Automatic Road Extraction in Rural Areas Based on Digital Imaging and Laser Scanner Data
12
作者 Claudionor Ribeiro da Silva Jorge Ant6nio Silva Centeno Maria Joao Henriques 《Journal of Civil Engineering and Architecture》 2011年第4期285-296,共12页
Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon ... Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon transform and optimal algorithms, which extracts automatically roads on images of rural areas, images that were acquired by digital cameras and airborne laser scanners. The proposed method detects linear segments iteratively and starting from this it generates the centerlines of the roads. The method is based on an objective function which depends on three parameters related to the correlation between the cross-sections, spectral similarity and directions of the segments. Different tests were performed using aerial photos, Ikonos images and laser scanner data of an area located in the state of Parana (Brazil) and their results are presented and discussed. The quality of the detection of the roads centerlines was computed using several indexes - completeness, correctness and RMS. The values obtained reveal the good performance of the proposed methodology. 展开更多
关键词 Radon transform automatic extraction ROADS laser scanning digital image
下载PDF
基于3D UNet结合Transformer的肝脏及肝肿瘤自动分割 被引量:1
13
作者 戴振晖 简婉薇 +5 位作者 朱琳 张白霖 靳怀志 杨耕 谭翔 王学涛 《中国医疗设备》 2023年第1期42-47,共6页
目的肝脏和肝肿瘤分割是肝癌放疗计划设计的重要步骤,本文提出新型自动分割模型,以实现肝脏和肝肿瘤的精确分割。方法在3D UNet深度神经网络中加入了残差模块和Swim Transformer模块,提出一个新型的卷积和Transformer结合的Res-Swim-UNe... 目的肝脏和肝肿瘤分割是肝癌放疗计划设计的重要步骤,本文提出新型自动分割模型,以实现肝脏和肝肿瘤的精确分割。方法在3D UNet深度神经网络中加入了残差模块和Swim Transformer模块,提出一个新型的卷积和Transformer结合的Res-Swim-UNet模型。在LiTS公共数据集上对比了所提出方法与先前方法的性能,并在本地数据集上验证了Res-Swim-UNet模型的泛化能力。结果Res-Swim-UNet模型在LiTS公共数据集上肝脏分割结果的Dice相似性系数(Dice Similarity Coefficient,DSC)、体积重叠误差(Volumetric Overlap Error,VOE)分别是0.957、0.522,相对于UNet模型DSC提高了1.6%,VOE降低了1.3%;肝肿瘤分割结果的DSC、VOE分别是0.672、0.617,相对于UNet模型DSC提高了13.5%,VOE降低了5.9%。在本地数据集上肝脏分割结果的DSC、VOE分别是0.895、0.552,肝肿瘤分割结果的DSC、VOE分别是0.589、0.706。结论本文提出的Res-Swim-UNet模型可以有效提高CT图像中肝脏和肝肿瘤的分割效果,且该模型在迁移到本地数据时仍具有较高的分割精度。该模型可以用于提高医生勾画靶区的效率。 展开更多
关键词 肝脏 肝肿瘤 自动分割 3D UNet深度神经网络 Swim transformer模块
下载PDF
Design and Simulation of an Audio Signal Alerting and Automatic Control System
14
作者 Winfred Adjardjah John Awuah Addor +1 位作者 Wisdom Opare Isaac Mensah Ayipeh 《Communications and Network》 2023年第4期98-119,共22页
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th... A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine. 展开更多
关键词 Emergency Response Emergency Management Team Audio Signal Alerting automatic Control System Uni Pro XL Manual Communication Fast Fourier transform Magnitude Zero Crossing Rate Root Means Square
下载PDF
基于改进型Transformer网络的高阶QAM调制分类研究
15
作者 安移 项澜 《光学仪器》 2023年第6期60-67,共8页
针对高阶正交振幅调制(quadrature amplitude modulation,QAM)信号难以调制分类的问题,提出了一种基于改进型Transformer的深度学习调制分类方法,通过并行2个Transformer的编码器,分析了在加性高斯白噪声(additive white Gaussian noise... 针对高阶正交振幅调制(quadrature amplitude modulation,QAM)信号难以调制分类的问题,提出了一种基于改进型Transformer的深度学习调制分类方法,通过并行2个Transformer的编码器,分析了在加性高斯白噪声(additive white Gaussian noise,AWGN)信道下,从4 QAM到4096 QAM的10种调制格式在信噪比从-10 dB到30 dB的自动调制分类效果。首先将QAM信号的正交、同相分量提取出来并进行预处理操作,再将预处理过的同相分量和正交分量分别通过2个Transformer编码器来提取分量特征,最后将2个提取到的分量特征进行组合来判断QAM信号的调制格式。实验结果证明:在没有载波频率偏移影响且信噪比大于20 dB时,网络可以准确识别出10种QAM调制格式;在载波频率偏移为500 Hz且信噪比大于26 dB时,网络对10种QAM调制格式的分类准确率高于98.6%。 展开更多
关键词 QAM 智能通信 transformer网络 AWGN信道 自动调制分类
下载PDF
全自动运行列车制动电阻液压风机自动控制方法研究
16
作者 王旭波 《液压气动与密封》 2025年第1期43-49,共7页
全自动运行列车制动电阻液压风机是一种利用液压技术驱动的设备,在列车运行过程中,其性能受到多个因素影响,容易导致输出气流或气压不稳定问题,因此研究全自动运行列车制动电阻液压风机的自动控制技术具有重要意义。在列车与轨道间作用... 全自动运行列车制动电阻液压风机是一种利用液压技术驱动的设备,在列车运行过程中,其性能受到多个因素影响,容易导致输出气流或气压不稳定问题,因此研究全自动运行列车制动电阻液压风机的自动控制技术具有重要意义。在列车与轨道间作用力的基础上,构建列车制动模型,获取制动力矩,将相对扭转角作为基础,计算自旋蠕滑力矩,根据瞬时蠕滑速度,计算出列车车轮与轨道间的粘着力矩;构建列车驱动模型,建立制动力矩主动分配目标函数,利用Park变换和Clarke变换,获取电阻液压风机电磁转矩,通过转子磁链与控制频率实现电阻液压风机的自动控制。实验结果表明:该控制方法在列车制动控制过程中,其风机效率及恒速占比均值分别为5.26 s和99.77%,控制电阻后的风机电压与理想电压基本一致,能够高效恒定的实现制动电阻液压风机控制,提高列车的安全性。 展开更多
关键词 全自动运行 列车制动 电阻液压风机 风机自动控制系统 PARK变换 CLARKE变换
下载PDF
智能型捏炼机胶片/小药自动称重投料系统
17
作者 刘金一 殷文山 《橡塑技术与装备》 2025年第2期22-27,共6页
橡胶制品企业在混炼胶生产中,一般根据产品配方和工艺特性,以及先后顺序,将炼胶分为一段(本文称A段)和二段(本文称B段)。A胶出来之后裁切成规则的胶片,再进入B胶混炼,加入促进剂等小药进行炼胶。目前在B炼所需的胶片和小药进行计量和输... 橡胶制品企业在混炼胶生产中,一般根据产品配方和工艺特性,以及先后顺序,将炼胶分为一段(本文称A段)和二段(本文称B段)。A胶出来之后裁切成规则的胶片,再进入B胶混炼,加入促进剂等小药进行炼胶。目前在B炼所需的胶片和小药进行计量和输送投入密炼机时,基本都是人工操作或者辅助操作,这种方式自动化程度低、生产效率低、危险系数高、出错率高、影响胶品质,同时设备噪音/环境都对人体有损害。智能型捏炼机胶片/小药自动称重投料系统,决解了上述问题和弊端,淘汰落后产能,增加了效益,对于橡胶制品企业是一种由优先考虑的设备和升级选择。 展开更多
关键词 胶片/小药 自动称重投料 经济效益 升级转型
下载PDF
增强-检测级联SAR地面目标检测网络
18
作者 陈宝翔 行坤 《电子设计工程》 2025年第3期151-155,161,共6页
在合成孔径雷达地面目标检测任务中,传统检测方法因为在处理过程中采用固定模型假设而导致性能严重下降。卷积神经网络作为一种基于数据驱动的方法,在拥有足够的训练集时可以显著提高目标检测的准确性,但在检测陆地背景下的微小目标时... 在合成孔径雷达地面目标检测任务中,传统检测方法因为在处理过程中采用固定模型假设而导致性能严重下降。卷积神经网络作为一种基于数据驱动的方法,在拥有足够的训练集时可以显著提高目标检测的准确性,但在检测陆地背景下的微小目标时性能仍不稳定。为了应对这些挑战,提出了一种先增强后检测的地面目标检测框架。其中包括以Transformer为骨干网络的增强网络、增强目标特征区分度的跨特征空间注意力模块以及具有多尺度特征的检测网络。形成一个级联的目标检测网络架构,以实现更好的推理性能。使用MSTAR基准数据集对提出的网络进行实验,证明提出的级联网络在各项指标上超过其他现有方法,其精度最高可以达到93.6%。 展开更多
关键词 合成孔径雷达 地面目标检测 自动目标识别 transformer网络
下载PDF
WTASR:Wavelet Transformer for Automatic Speech Recognition of Indian Languages
19
作者 Tripti Choudhary Vishal Goyal Atul Bansal 《Big Data Mining and Analytics》 EI CSCD 2023年第1期85-91,共7页
Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation.This translation is used in a variety of applications like voice enabled commands,assist... Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation.This translation is used in a variety of applications like voice enabled commands,assistive devices and bots,etc.There is a significant lack of efficient technology for Indian languages.In this paper,an wavelet transformer for automatic speech recognition(WTASR)of Indian language is proposed.The speech signals suffer from the problem of high and low frequency over different times due to variation in speech of the speaker.Thus,wavelets enable the network to analyze the signal in multiscale.The wavelet decomposition of the signal is fed in the network for generating the text.The transformer network comprises an encoder decoder system for speech translation.The model is trained on Indian language dataset for translation of speech into corresponding text.The proposed method is compared with other state of the art methods.The results show that the proposed WTASR has a low word error rate and can be used for effective speech recognition for Indian language. 展开更多
关键词 transformer WAVELET automatic speech recognition(ASR) Indian language
原文传递
A Wavelet Transform Method to Detect P and S-Phases in Three Component Seismic Data
20
作者 Salam Al-Hashmi Adrian Rawlins Frank Vernon 《Open Journal of Earthquake Research》 2013年第1期1-20,共20页
The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavele... The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent. 展开更多
关键词 Discrete Time WAVELET transform P and S-phases automatic Detection Rectilinearity Function
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部