Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat...Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.展开更多
The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determ...The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determine the dispersion curve of the fiber sample. A common problem in any interferogram analysis is the accuracy in locating fringe centers (fringe skeleton). There are a lot of computer-aided algorithms, which depend on the interferogram types, used to fringe skeleton extraction of various digital interferogram. In this paper, as far as I know, a novel algorithm for fringe skeleton extraction of double bright fringe of multiple-beam Fizeau fringe is presented. The proposed algorithm based on using the different order of Fourier transform and the derivative-sign binary image. Also the proposed algorithm has been successfully tested by using a computer simulation fringe and an experimental pattern. The results are compared with the original interferogram and shown a good agreement.展开更多
The aim of this paper is to exploit the existing Lexicon-Grammar(LG)tables,as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing.These operations includ...The aim of this paper is to exploit the existing Lexicon-Grammar(LG)tables,as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing.These operations include multiple processes at the lexical,morpho-syntactic,and semantic levels.Our proposal is to model highly productive phenomena of the Arabic language,such as pronominalization and passivization,dedicated to the both Arabic verb classes and Multiword Expressions(MWEs),in order to formalize the relation between structures and their semantic properties and thus to represent the symmetry and pairs between sentences that share a predicate that links the noun and a support verb.Furthermore,the automatic process of paraphrasing involves both the distributional and transformative features of each class of verbs or other structures such as Arabic MWEs.This research in progress outlines how to build Lexicon-Grammar tables for Arabic syntactic sentences by using automatic paraphrasing in a large transformational grammar on the one hand,and to implement it into both NooJ electronic dictionaries and local grammars on the other hand.展开更多
This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformatio...This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.展开更多
Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon ...Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon transform and optimal algorithms, which extracts automatically roads on images of rural areas, images that were acquired by digital cameras and airborne laser scanners. The proposed method detects linear segments iteratively and starting from this it generates the centerlines of the roads. The method is based on an objective function which depends on three parameters related to the correlation between the cross-sections, spectral similarity and directions of the segments. Different tests were performed using aerial photos, Ikonos images and laser scanner data of an area located in the state of Parana (Brazil) and their results are presented and discussed. The quality of the detection of the roads centerlines was computed using several indexes - completeness, correctness and RMS. The values obtained reveal the good performance of the proposed methodology.展开更多
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th...A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.展开更多
Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation.This translation is used in a variety of applications like voice enabled commands,assist...Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation.This translation is used in a variety of applications like voice enabled commands,assistive devices and bots,etc.There is a significant lack of efficient technology for Indian languages.In this paper,an wavelet transformer for automatic speech recognition(WTASR)of Indian language is proposed.The speech signals suffer from the problem of high and low frequency over different times due to variation in speech of the speaker.Thus,wavelets enable the network to analyze the signal in multiscale.The wavelet decomposition of the signal is fed in the network for generating the text.The transformer network comprises an encoder decoder system for speech translation.The model is trained on Indian language dataset for translation of speech into corresponding text.The proposed method is compared with other state of the art methods.The results show that the proposed WTASR has a low word error rate and can be used for effective speech recognition for Indian language.展开更多
The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavele...The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant(62171045,62201090)in part by the National Key Research and Development Program of China under Grants(2020YFB1807602,2019YFB1804404).
文摘Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.
文摘The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determine the dispersion curve of the fiber sample. A common problem in any interferogram analysis is the accuracy in locating fringe centers (fringe skeleton). There are a lot of computer-aided algorithms, which depend on the interferogram types, used to fringe skeleton extraction of various digital interferogram. In this paper, as far as I know, a novel algorithm for fringe skeleton extraction of double bright fringe of multiple-beam Fizeau fringe is presented. The proposed algorithm based on using the different order of Fourier transform and the derivative-sign binary image. Also the proposed algorithm has been successfully tested by using a computer simulation fringe and an experimental pattern. The results are compared with the original interferogram and shown a good agreement.
文摘The aim of this paper is to exploit the existing Lexicon-Grammar(LG)tables,as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing.These operations include multiple processes at the lexical,morpho-syntactic,and semantic levels.Our proposal is to model highly productive phenomena of the Arabic language,such as pronominalization and passivization,dedicated to the both Arabic verb classes and Multiword Expressions(MWEs),in order to formalize the relation between structures and their semantic properties and thus to represent the symmetry and pairs between sentences that share a predicate that links the noun and a support verb.Furthermore,the automatic process of paraphrasing involves both the distributional and transformative features of each class of verbs or other structures such as Arabic MWEs.This research in progress outlines how to build Lexicon-Grammar tables for Arabic syntactic sentences by using automatic paraphrasing in a large transformational grammar on the one hand,and to implement it into both NooJ electronic dictionaries and local grammars on the other hand.
基金Project supported by the National Oommission of Defense Science and Technotocjy(No.Y96-10)
文摘This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.
文摘Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon transform and optimal algorithms, which extracts automatically roads on images of rural areas, images that were acquired by digital cameras and airborne laser scanners. The proposed method detects linear segments iteratively and starting from this it generates the centerlines of the roads. The method is based on an objective function which depends on three parameters related to the correlation between the cross-sections, spectral similarity and directions of the segments. Different tests were performed using aerial photos, Ikonos images and laser scanner data of an area located in the state of Parana (Brazil) and their results are presented and discussed. The quality of the detection of the roads centerlines was computed using several indexes - completeness, correctness and RMS. The values obtained reveal the good performance of the proposed methodology.
文摘A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.
文摘Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation.This translation is used in a variety of applications like voice enabled commands,assistive devices and bots,etc.There is a significant lack of efficient technology for Indian languages.In this paper,an wavelet transformer for automatic speech recognition(WTASR)of Indian language is proposed.The speech signals suffer from the problem of high and low frequency over different times due to variation in speech of the speaker.Thus,wavelets enable the network to analyze the signal in multiscale.The wavelet decomposition of the signal is fed in the network for generating the text.The transformer network comprises an encoder decoder system for speech translation.The model is trained on Indian language dataset for translation of speech into corresponding text.The proposed method is compared with other state of the art methods.The results show that the proposed WTASR has a low word error rate and can be used for effective speech recognition for Indian language.
文摘The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.