To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dyna...To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dynamic mixed Weibull distribution(DMWD)model.Firstly,according to the features of aircraft assembling,a DMWD model considering the dynamic reliability of multiple subsystems and their synthetic effects on the whole equipment is established.A typical automatic drilling&riveting machine is selected as the research object,and the dynamic weights of reliability of three subsystems are modeled and solved.Subsequently the unknown parameters of the DMWD model are estimated based on maximum likelihood estimation(MLE)and Newton-Raphson method.Finally,the EWH of an automatic station is defined and modeled by using the solved dynamic reliability function.Based on the experimental study on a real automatic drilling&riveting machine from a wing panel assembly station,it is shown that the proposed DMWD and EWH models could effectively calculate the equipment reliability with full consideration of its multiple subsystems.The DMWD model is more suitable for improving the solution precision of EWH than the traditional three-parameter Weibull distribution.展开更多
The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft ...The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.展开更多
Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser t...Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser tracker costs too much. To improve the relative position accuracy of aircraft assembly drilling, and ensure the hole-edge distance requirement, a method was presented to modify the coordinates of drilling holes. Based on online inspecting two positions of pre-assembly holes and their theoretical coordinates, the spatial coordinate transformation matrix of modification could be calculated. Thus the straight drilling holes could be modified. The method improves relative position accuracy of drilling on simple structure effectively. And it reduces the requirement of absolute position accuracy and the cost of position modification. And the process technician also can use this method to decide the position accuracy of different pre-assembly holes based on the accuracy requirement of assembly holes.展开更多
Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previou...Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to mode/the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method in shortening the time-consumed in assembly planning and in minimizing the handling difficulty, excessive reorientation and dissimilarity of assembly operations.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
The key realization techniques of virtual assembly process planning (VAPP) system are analyzed, including virtual assembly model, real-time collision detection, automatic constraint recognition algorithm, cable harn...The key realization techniques of virtual assembly process planning (VAPP) system are analyzed, including virtual assembly model, real-time collision detection, automatic constraint recognition algorithm, cable harness assembly process planning and visual assembly process plan at the workshop. A virtual assembly model based on hierarchical assembly task list (HATL) is put forward, in which assembly tasks are defined to express component assembling operations and are sequentially and hierarchically organized according to different subassemblies, which can perfectly model the construction process of product, And a multi-layer automatic geometry constraint recognition algorithm of how to identify assmbly constraint relations in the virtual environment is proposed, then a four-layer collision detection algorithm is discussed. A VAPP system is built and some simple mechanical assemblies are used to illustrate the feasibility of the proposed method and algorithms.展开更多
Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process paramete...Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.展开更多
In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system — DSFAS based on the ASPIG...In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system — DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.展开更多
RISC-V指令集架构(Instruction Set Architecture,ISA)作为一种新兴的精简ISA,因免费、开源、自由等特点而得到快速发展.由于国内外对RISC-V的研究主要集中在硬件开发,软件生态相较于成熟ISA还很薄弱,实现一套RISC-V指令集高性能基础数...RISC-V指令集架构(Instruction Set Architecture,ISA)作为一种新兴的精简ISA,因免费、开源、自由等特点而得到快速发展.由于国内外对RISC-V的研究主要集中在硬件开发,软件生态相较于成熟ISA还很薄弱,实现一套RISC-V指令集高性能基础数学库可以进一步丰富RISC-V软件生态.本文基于自动化移植技术实现申威数学库到RISC-V的移植,为RISC-V指令架构提供首个使用向量指令优化的基础数学库系统.本文提出向量寄存器自动分支查表法与路径标记插入法,重点解决不同架构间寄存器映射过程中的寄存器复用问题,实现寄存器正确高效映射,并依据不同指令等价转换策略自动化移植数学函数69个.测试结果表明,RISC-V基础数学库函数可实现正确计算,最大误差为1.90ULP,函数性能平均为157.03节拍.展开更多
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(Nos.N170303009,N180703007),China.
文摘To improve the accuracy of capacity analysis and prediction for the aircraft assembly stations,an approach for calculating the effective working hour(EWH)of automatic assembly equipment is introduced by using the dynamic mixed Weibull distribution(DMWD)model.Firstly,according to the features of aircraft assembling,a DMWD model considering the dynamic reliability of multiple subsystems and their synthetic effects on the whole equipment is established.A typical automatic drilling&riveting machine is selected as the research object,and the dynamic weights of reliability of three subsystems are modeled and solved.Subsequently the unknown parameters of the DMWD model are estimated based on maximum likelihood estimation(MLE)and Newton-Raphson method.Finally,the EWH of an automatic station is defined and modeled by using the solved dynamic reliability function.Based on the experimental study on a real automatic drilling&riveting machine from a wing panel assembly station,it is shown that the proposed DMWD and EWH models could effectively calculate the equipment reliability with full consideration of its multiple subsystems.The DMWD model is more suitable for improving the solution precision of EWH than the traditional three-parameter Weibull distribution.
基金supported by the National Natural Science Foundation of China (No.51875287)the National Defense Basic Scientific Research Program of China (No.JCKY2018605C010)the National Key Research and Development Program of China (No.2018YFB1306800)
文摘The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.
文摘Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser tracker costs too much. To improve the relative position accuracy of aircraft assembly drilling, and ensure the hole-edge distance requirement, a method was presented to modify the coordinates of drilling holes. Based on online inspecting two positions of pre-assembly holes and their theoretical coordinates, the spatial coordinate transformation matrix of modification could be calculated. Thus the straight drilling holes could be modified. The method improves relative position accuracy of drilling on simple structure effectively. And it reduces the requirement of absolute position accuracy and the cost of position modification. And the process technician also can use this method to decide the position accuracy of different pre-assembly holes based on the accuracy requirement of assembly holes.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)The Eleventh Five Year Plan Defense Pre-Research Fund, China (Grant No. 51318010205)
文摘Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to mode/the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method in shortening the time-consumed in assembly planning and in minimizing the handling difficulty, excessive reorientation and dissimilarity of assembly operations.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
文摘The key realization techniques of virtual assembly process planning (VAPP) system are analyzed, including virtual assembly model, real-time collision detection, automatic constraint recognition algorithm, cable harness assembly process planning and visual assembly process plan at the workshop. A virtual assembly model based on hierarchical assembly task list (HATL) is put forward, in which assembly tasks are defined to express component assembling operations and are sequentially and hierarchically organized according to different subassemblies, which can perfectly model the construction process of product, And a multi-layer automatic geometry constraint recognition algorithm of how to identify assmbly constraint relations in the virtual environment is proposed, then a four-layer collision detection algorithm is discussed. A VAPP system is built and some simple mechanical assemblies are used to illustrate the feasibility of the proposed method and algorithms.
基金Supported by the National Natural Science Foundation of China(51105200)
文摘Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.
基金This Research was Supported by Shanghai Natural Science and Technology project(01Zf14004)
文摘In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system — DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.
文摘RISC-V指令集架构(Instruction Set Architecture,ISA)作为一种新兴的精简ISA,因免费、开源、自由等特点而得到快速发展.由于国内外对RISC-V的研究主要集中在硬件开发,软件生态相较于成熟ISA还很薄弱,实现一套RISC-V指令集高性能基础数学库可以进一步丰富RISC-V软件生态.本文基于自动化移植技术实现申威数学库到RISC-V的移植,为RISC-V指令架构提供首个使用向量指令优化的基础数学库系统.本文提出向量寄存器自动分支查表法与路径标记插入法,重点解决不同架构间寄存器映射过程中的寄存器复用问题,实现寄存器正确高效映射,并依据不同指令等价转换策略自动化移植数学函数69个.测试结果表明,RISC-V基础数学库函数可实现正确计算,最大误差为1.90ULP,函数性能平均为157.03节拍.