A practical neural network model for morphological filtering and a simulated annealing optimal algorithm for the network parameters training are proposed in this paper. It is pointed out that the opti- mal designing p...A practical neural network model for morphological filtering and a simulated annealing optimal algorithm for the network parameters training are proposed in this paper. It is pointed out that the opti- mal designing process of the morphological filtering network in fact is the optimal learning process of adjusting network parameters (structuring element, or SE for short) to accommodate image environment. Then the network structure may possess the characteristics of image targets, and so give specific infor- mation to the SE. Morphological filters formed in this way become certainly intelligent and can provide good filtering results and robust adaptability to complex changing image. For application to motional image target detection, dynamic training algorithm is applied to the designing process using asymptotic shrinking error and appropriate network weights adjusting. Experimental results show that the algorithm has invariant property with respect to shift, scale and rotation of moving target in continuing detection of moving targets.展开更多
This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm ob...This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.展开更多
文摘A practical neural network model for morphological filtering and a simulated annealing optimal algorithm for the network parameters training are proposed in this paper. It is pointed out that the opti- mal designing process of the morphological filtering network in fact is the optimal learning process of adjusting network parameters (structuring element, or SE for short) to accommodate image environment. Then the network structure may possess the characteristics of image targets, and so give specific infor- mation to the SE. Morphological filters formed in this way become certainly intelligent and can provide good filtering results and robust adaptability to complex changing image. For application to motional image target detection, dynamic training algorithm is applied to the designing process using asymptotic shrinking error and appropriate network weights adjusting. Experimental results show that the algorithm has invariant property with respect to shift, scale and rotation of moving target in continuing detection of moving targets.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 200/AA/14)
文摘This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.