Traditional research on automatic lane change has primarily focused on high-speed scenarios and has not considered the dynamic state changes of surrounding vehicles.This paper addresses this problem by proposing a tra...Traditional research on automatic lane change has primarily focused on high-speed scenarios and has not considered the dynamic state changes of surrounding vehicles.This paper addresses this problem by proposing a trajectory planning method to enable automatic lane change at medium and low speeds.The method is based on a dynamic safety domain model,which takes into account the actual state change of surrounding vehicles,as well as the upper boundary of the safety domain for collision avoidance and the lower boundary of comfort for vehicle stability.The proposed method involves the quantification of the safety and comfort boundaries through parametric modeling of the vehicle.A quintic polynomial trajectory planning method is proposed and evaluated through simulation and testing,resulting in improved safety and comfort for automatic lane change.展开更多
The enhancement of computing power,the maturity of learning algorithms,and the richness of application scenarios make Artificial Intelligence(AI)solution increasingly attractive when solving Geo-spatial Information Sc...The enhancement of computing power,the maturity of learning algorithms,and the richness of application scenarios make Artificial Intelligence(AI)solution increasingly attractive when solving Geo-spatial Information Science(GSIS)problems.These include image matching,image target detection,change detection,image retrieval,and for generating data models of various types.This paper discusses the connection and synthesis between AI and GSIS in block adjustment,image search and discovery in big databases,automatic change detection,and detection of abnormalities,demonstrating that AI can integrate GSIS.Moreover,the concept of Earth Observation Brain and Smart Geo-spatial Service(SGSS)is introduced in the end,and it is expected to promote the development of GSIS into broadening applications.展开更多
文摘Traditional research on automatic lane change has primarily focused on high-speed scenarios and has not considered the dynamic state changes of surrounding vehicles.This paper addresses this problem by proposing a trajectory planning method to enable automatic lane change at medium and low speeds.The method is based on a dynamic safety domain model,which takes into account the actual state change of surrounding vehicles,as well as the upper boundary of the safety domain for collision avoidance and the lower boundary of comfort for vehicle stability.The proposed method involves the quantification of the safety and comfort boundaries through parametric modeling of the vehicle.A quintic polynomial trajectory planning method is proposed and evaluated through simulation and testing,resulting in improved safety and comfort for automatic lane change.
基金This work was supported in part by the National key R and D plan on strategic international scientific and technological innovation cooperation special project[grant number 2016YFE0202300]the National Natural Science Foundation of China[grant number 61671332,41771452,51708426,41890820,41771454]+1 种基金the Natural Science Fund of Hubei Province in China[grant number 2018CFA007]the Independent Research Projects of Wuhan University[grant number 2042018kf0250].
文摘The enhancement of computing power,the maturity of learning algorithms,and the richness of application scenarios make Artificial Intelligence(AI)solution increasingly attractive when solving Geo-spatial Information Science(GSIS)problems.These include image matching,image target detection,change detection,image retrieval,and for generating data models of various types.This paper discusses the connection and synthesis between AI and GSIS in block adjustment,image search and discovery in big databases,automatic change detection,and detection of abnormalities,demonstrating that AI can integrate GSIS.Moreover,the concept of Earth Observation Brain and Smart Geo-spatial Service(SGSS)is introduced in the end,and it is expected to promote the development of GSIS into broadening applications.