The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting syste...The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.展开更多
Electrical system of military vehicle is a typical parameterized nonlinear system where complicated bifurcations may exist and threaten its safe and stable operation. An algebraic criterion for Hopf bifurcation is pre...Electrical system of military vehicle is a typical parameterized nonlinear system where complicated bifurcations may exist and threaten its safe and stable operation. An algebraic criterion for Hopf bifurcation is presented briefly and applied to find Hopf bifurcation point of the electrical system with automatic voltage regulator(AVR) dynamics in military vehicle. Hopf bifurcation controllers are designed for this electrical system by using wash-out filter,linear feedback,nonlinear feedback and their combination. The linear feedback control makes the system bring Hopf bifurcation at preferable parameter,the nonlinear feedback control modifies the type of the bifurcation,and the wash-out filter enhances the system damping,thus,the Hopf bifurcation is eliminated and the electrical system stability is ensured. Simulation results show the controller's validity.展开更多
An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapun...An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions.The simulation results illustrate that the method is applicable and robust.展开更多
Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough ...Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough set (RS) and least squares support vector machine (LSSVM). By using RS theory, the monitor data attribute of AUV was reduced to eliminate the redundant information and to improve efficiency. Then, LSSVM model was trained by using the reduced rules, and its parameters were optimized by using chaos theory for the higher accurate control. Taken an AUV typed NPS Phoenix as an example, its depth step response, horizontal rudder and pitch change were simulated. The simulation results show that the method improves the model's accuracy and has better real-time response, fault-tolerant ability, reliability and strong anti-interfere capability.展开更多
The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantita...The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal dimension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method's feasibility.展开更多
A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acous...A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.展开更多
A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is ado...A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is adopted to describe the localization problem. Under an unknown-but-bounded assumption for sensor noise,bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merged these constraints,a convex polyhedron representing the set of all configurations consistent with the sensor measurements can be induced. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more AUVs can then be obtained by projecting this polyhedron into appropriate subspaces of the configuration space. The localization uncertain region for each AUV can be recovered by an approximation algorithm to realize underwater localization for multiple AUVs. The deduced theoretically and the simulated results show that it is an economical and practical localization method for the AUV swarm.展开更多
Aiming at some weapon systems with shooting domain,the stochastic passage characteristics of the barrel were studied.On the basis of the exact definition of the stochastic passage characteristics,its opportunity-await...Aiming at some weapon systems with shooting domain,the stochastic passage characteristics of the barrel were studied.On the basis of the exact definition of the stochastic passage characteristics,its opportunity-awaiting time,residence time and stochastic passage period were given by using the transition probability matrix,and they all obeyed the geometry distributions.Their means and variances were also derived,and the relations between the time indexes and the structure and parameters of weapon control system were established.Finally,the creditability of the conclusions was verified by the test data of weapon system in proving ground.展开更多
Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators ...Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.展开更多
文摘The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.
基金Sponsored by Foundation for Science Research Development of Nanjing University of Science and Technology
文摘Electrical system of military vehicle is a typical parameterized nonlinear system where complicated bifurcations may exist and threaten its safe and stable operation. An algebraic criterion for Hopf bifurcation is presented briefly and applied to find Hopf bifurcation point of the electrical system with automatic voltage regulator(AVR) dynamics in military vehicle. Hopf bifurcation controllers are designed for this electrical system by using wash-out filter,linear feedback,nonlinear feedback and their combination. The linear feedback control makes the system bring Hopf bifurcation at preferable parameter,the nonlinear feedback control modifies the type of the bifurcation,and the wash-out filter enhances the system damping,thus,the Hopf bifurcation is eliminated and the electrical system stability is ensured. Simulation results show the controller's validity.
基金Sponsored by the National Ministries Foundation(A2620061288)
文摘An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions.The simulation results illustrate that the method is applicable and robust.
文摘Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough set (RS) and least squares support vector machine (LSSVM). By using RS theory, the monitor data attribute of AUV was reduced to eliminate the redundant information and to improve efficiency. Then, LSSVM model was trained by using the reduced rules, and its parameters were optimized by using chaos theory for the higher accurate control. Taken an AUV typed NPS Phoenix as an example, its depth step response, horizontal rudder and pitch change were simulated. The simulation results show that the method improves the model's accuracy and has better real-time response, fault-tolerant ability, reliability and strong anti-interfere capability.
基金Sponsored by the National Science Foundation (61004118)the Natural Science Foundation Project of CQ CSTC (2011A70007)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission (KJ120422)the Science Foundation Project of Chongqing Jiaotong University Open Research Fund of Key Laboratory of Bridge Structural Engineering of Chongqing Jiaotong University (CQSLBF-Y11-5)
文摘The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal dimension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method's feasibility.
基金Sponsored by National Natural Foundation (50979093)the High Technology Research and Development Program of China (863 Program)( 2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.
基金Sponsored by National Natural Foundation (50979093)High Technology Research and Development Program of China (2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is adopted to describe the localization problem. Under an unknown-but-bounded assumption for sensor noise,bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merged these constraints,a convex polyhedron representing the set of all configurations consistent with the sensor measurements can be induced. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more AUVs can then be obtained by projecting this polyhedron into appropriate subspaces of the configuration space. The localization uncertain region for each AUV can be recovered by an approximation algorithm to realize underwater localization for multiple AUVs. The deduced theoretically and the simulated results show that it is an economical and practical localization method for the AUV swarm.
基金Sponsored by National Defense Fundation of China(9140C300602080C30)NUST Research Fundation of China(2010ZYTS050)
文摘Aiming at some weapon systems with shooting domain,the stochastic passage characteristics of the barrel were studied.On the basis of the exact definition of the stochastic passage characteristics,its opportunity-awaiting time,residence time and stochastic passage period were given by using the transition probability matrix,and they all obeyed the geometry distributions.Their means and variances were also derived,and the relations between the time indexes and the structure and parameters of weapon control system were established.Finally,the creditability of the conclusions was verified by the test data of weapon system in proving ground.
基金Sponsored by the Doctoral Fund of Ministry of Education of China(20070288022)the Natural Science Foundation of Jiangsu Province of China(BK2008404)the Young Teacher Academic Foundation of Nanjing University of Technology(39710013)
文摘Aimed at the finite-time stabilization problem of a class of flexible manipulators,a finite-time state feedback stabilization controller was proposed in this paper.Firstly,the nonlinear model of flexible manipulators was transformed into linear system through the exact state feedback linearization,and then using the finite time stabilization control method of the linear system,a finite-time state feedback stabilization controller was designed for the flexible manipulators.Furthermore,it was proved that all the states of flexible manipulators could be stabilized to equilibrium in finite-time under the proposed controller.The simulation results show that the performance of the flexible manipulators under the proposed finite-time state feedback controller is better than the traditional state-feedback controller.The proposed finite-time stabilization controller can improve the performance of the flexible manipulators.