We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By emplo...In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By employing the time varying characteristic of particle filter technique, the new scheme combined the preamble based estimating step and data based estimating step to provide initial probability density recursively. Theoretical analysis proved that the proposed AFC scheme could provide better performance than the two-step scheme. The same conclusion was achieved by computer simulations with the criteria of root-mean square (RMS) frequency estimating performance and bit error rate performance.展开更多
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.
基金supported by the National Basic Research Program of China (2009CB320401)the National Science and Technology Major Project of China (2012ZX03004005-002)+1 种基金the New Generation Broadband Wireless Mobile Communication Network of Major Special Projects (2010ZX03003-001)the Fundamental Research Funds for the Central Universities (2010PTB-03-04 G470220)
文摘In this paper a new automatic frequency control (AFC) scheme was proposed, which could be used for the receiver of low earth orbit (LEO) satellite communication system in continuous transmitting scenario. By employing the time varying characteristic of particle filter technique, the new scheme combined the preamble based estimating step and data based estimating step to provide initial probability density recursively. Theoretical analysis proved that the proposed AFC scheme could provide better performance than the two-step scheme. The same conclusion was achieved by computer simulations with the criteria of root-mean square (RMS) frequency estimating performance and bit error rate performance.