A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system ...A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system and a computer control system.The maximum servo-controlled force was 2 tonnes.The new system was a high-stiffness system with a small size.During ICT tests,rock core samples could be easily loaded in the axial direction.So the initiation,propagation,and coalescence of cracks in core samples were observed on ICT images.展开更多
To reduce the amount of labor in the sheet metal stamping industry, improve the processing efficiency and safety factor and realize the automatic production of stamping, this paper designs a new type of overall plan a...To reduce the amount of labor in the sheet metal stamping industry, improve the processing efficiency and safety factor and realize the automatic production of stamping, this paper designs a new type of overall plan about automatic loading and unloading material manipulator for telescopic punch which can realize the telescopic movements with two degrees. The mechanical structure of the manipulator includes a lifting device and a telescopic device. Using PLC control program, the control system can automatically achieve continuous beat actions of drawing and stacking for the processing raw materials. According to the mechanical structure, the paper analyzes the working principle and control strategy of each component in the loading-and-unloading material manipulator systems.展开更多
Aiming at the requirements of intelligent loading and shipping in large household appliance industry,an automatic loading and unloading robot for refrigerator is proposed.The robot is a gantry truss robot,which is com...Aiming at the requirements of intelligent loading and shipping in large household appliance industry,an automatic loading and unloading robot for refrigerator is proposed.The robot is a gantry truss robot,which is composed of active support,passive support,beam and fixture components at both ends to realize the taking and placing of the refrigerator on the logistics transmission line to the truck.In the actual working conditions,the no-load truss robot experiment,found that the robot in the design problems,and the robot was optimized.It not only solves the safety hazards of the refrigerator when grabbing and stacking products,but also realizes the automation and intelligence of the refrigerator conveying process.展开更多
In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly dist...In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly distributed among all processors by alternative message passing. The problems received by each processor are processed based on their local dominance properties, which avoids unnecessary interval evaluations. Further, the problem is treated as a whole at the beginning of computation so that no initial decomposition scheme is required. Numerical experiments indicate that the model works well and is stable with different number of parallel processors, distributes the load evenly among the processors, and provides an impressive speedup, especially when the problem is time-consuming to solve.展开更多
The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning ...The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 50905186,No. 51174213)the Major State Basic Research Development Program Fund (Grant No. 2010CB226804)the Project-sponsored by SRF for ROCS,the Ministry of Education and Fundamental Research Funds for the Central Universities and Research Program in State Key Laboratory of Coal Resources and Safe Mining of China University of Mining and Technology
文摘A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system and a computer control system.The maximum servo-controlled force was 2 tonnes.The new system was a high-stiffness system with a small size.During ICT tests,rock core samples could be easily loaded in the axial direction.So the initiation,propagation,and coalescence of cracks in core samples were observed on ICT images.
基金Supported by Science and Technology Research Project of Anhui Province(15czz02030)
文摘To reduce the amount of labor in the sheet metal stamping industry, improve the processing efficiency and safety factor and realize the automatic production of stamping, this paper designs a new type of overall plan about automatic loading and unloading material manipulator for telescopic punch which can realize the telescopic movements with two degrees. The mechanical structure of the manipulator includes a lifting device and a telescopic device. Using PLC control program, the control system can automatically achieve continuous beat actions of drawing and stacking for the processing raw materials. According to the mechanical structure, the paper analyzes the working principle and control strategy of each component in the loading-and-unloading material manipulator systems.
文摘Aiming at the requirements of intelligent loading and shipping in large household appliance industry,an automatic loading and unloading robot for refrigerator is proposed.The robot is a gantry truss robot,which is composed of active support,passive support,beam and fixture components at both ends to realize the taking and placing of the refrigerator on the logistics transmission line to the truck.In the actual working conditions,the no-load truss robot experiment,found that the robot in the design problems,and the robot was optimized.It not only solves the safety hazards of the refrigerator when grabbing and stacking products,but also realizes the automation and intelligence of the refrigerator conveying process.
文摘In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly distributed among all processors by alternative message passing. The problems received by each processor are processed based on their local dominance properties, which avoids unnecessary interval evaluations. Further, the problem is treated as a whole at the beginning of computation so that no initial decomposition scheme is required. Numerical experiments indicate that the model works well and is stable with different number of parallel processors, distributes the load evenly among the processors, and provides an impressive speedup, especially when the problem is time-consuming to solve.
文摘The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.