This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua...This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ...With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.展开更多
To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as...To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.展开更多
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin c...Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.展开更多
Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is o...Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.展开更多
Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these...Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these systems,it is important to deploy efficient models capable of adapting to diverse deployment conditions.In recent years,on-demand pruning methods have obtained significant attention within the ASR domain due to their adaptability in various deployment scenarios.However,these methods often confront substantial trade-offs,particularly in terms of unstable accuracy when reducing the model size.To address challenges,this study introduces two crucial empirical findings.Firstly,it proposes the incorporation of an online distillation mechanism during on-demand pruning training,which holds the promise of maintaining more consistent accuracy levels.Secondly,it proposes the utilization of the Mogrifier long short-term memory(LSTM)language model(LM),an advanced iteration of the conventional LSTM LM,as an effective alternative for pruning targets within the ASR framework.Through rigorous experimentation on the ASR system,employing the Mogrifier LSTM LM and training it using the suggested joint on-demand pruning and online distillation method,this study provides compelling evidence.The results exhibit that the proposed methods significantly outperform a benchmark model trained solely with on-demand pruning methods.Impressively,the proposed strategic configuration successfully reduces the parameter count by approximately 39%,all the while minimizing trade-offs.展开更多
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ...<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>展开更多
Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question rega...Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.展开更多
Inadequate management of large in-train forces transferred through coupler systems of a railway train leads to running and structural failures of vehicles.Understanding these phenomena and their mitigation requires ac...Inadequate management of large in-train forces transferred through coupler systems of a railway train leads to running and structural failures of vehicles.Understanding these phenomena and their mitigation requires accurate estimation of relative motions and in-train forces between vehicle bodies.Previous numerical studies have ignored inertia of coupling elements and the impacts between couplers.Thus,existing models underestimate the additional dynamic variations in in-train forces.Detailed multi-body dynamic models of two AAR(Association of American Railroads)coupler systems used in passenger and freight trains are developed,incorporating coupler inertia and various slacks.Due to the modeling and simulation com-plexities involved in a full train model,with such details of coupler system,actual longitudinal train dynamics is not studied.A system comprising only two coupling units,inter-connecting two consecutive vehicles,is modeled.Considered system has been fixed at one end and an excitation force is applied at the other end,to mimic a relative force transmission through combined coupler system.Simulation results obtained from this representative system show that,noticeable influence in in-train forces are expected due to the combined effect of inertia of couplers and intermittent impacts between couplers in the slack regime.Maximum amplitude of longitudinal reaction force,transferred from draft gear housing to vehicle body,is expected to be significantly higher than that predicted using existing models of coupler system.It is also observed that the couplers and knuckles are subjected to significant longitudinal and lateral contact forces,due to the intermittent impacts between couplers.Thus,accurate estimation of draft gear reaction force and impact forces between couplers are essential to design vehicle and coupler components,respectively.展开更多
With the increase of Beijing urban rail transport network, the structure of the road network is becoming more complex, and passengers have more travel options. Together with the complex paths and different timetables,...With the increase of Beijing urban rail transport network, the structure of the road network is becoming more complex, and passengers have more travel options. Together with the complex paths and different timetables, taking the last train is becoming much more difficult and unsuccessful. To avoid losses, we propose feasible suggestions to the last train with reasonable selling tickets system.展开更多
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, th...The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.展开更多
为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习...为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。展开更多
基金supported jointly by the National Natural Science Foundation of China(61703033,61790573)Beijing Natural Science Foundation(4192046)+1 种基金Fundamental Research Funds for Central Universities(2018JBZ002)State Key Laboratory of Rail Traffic Control and Safety(RCS2018ZT013),Beijing Jiaotong University
文摘This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.
文摘With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.
文摘To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.
文摘Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975544,51675495).
文摘Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-00377,Development of Intelligent Analysis and Classification Based Contents Class Categorization Technique to Prevent Imprudent Harmful Media Distribution).
文摘Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these systems,it is important to deploy efficient models capable of adapting to diverse deployment conditions.In recent years,on-demand pruning methods have obtained significant attention within the ASR domain due to their adaptability in various deployment scenarios.However,these methods often confront substantial trade-offs,particularly in terms of unstable accuracy when reducing the model size.To address challenges,this study introduces two crucial empirical findings.Firstly,it proposes the incorporation of an online distillation mechanism during on-demand pruning training,which holds the promise of maintaining more consistent accuracy levels.Secondly,it proposes the utilization of the Mogrifier long short-term memory(LSTM)language model(LM),an advanced iteration of the conventional LSTM LM,as an effective alternative for pruning targets within the ASR framework.Through rigorous experimentation on the ASR system,employing the Mogrifier LSTM LM and training it using the suggested joint on-demand pruning and online distillation method,this study provides compelling evidence.The results exhibit that the proposed methods significantly outperform a benchmark model trained solely with on-demand pruning methods.Impressively,the proposed strategic configuration successfully reduces the parameter count by approximately 39%,all the while minimizing trade-offs.
文摘<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>
文摘Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.
文摘Inadequate management of large in-train forces transferred through coupler systems of a railway train leads to running and structural failures of vehicles.Understanding these phenomena and their mitigation requires accurate estimation of relative motions and in-train forces between vehicle bodies.Previous numerical studies have ignored inertia of coupling elements and the impacts between couplers.Thus,existing models underestimate the additional dynamic variations in in-train forces.Detailed multi-body dynamic models of two AAR(Association of American Railroads)coupler systems used in passenger and freight trains are developed,incorporating coupler inertia and various slacks.Due to the modeling and simulation com-plexities involved in a full train model,with such details of coupler system,actual longitudinal train dynamics is not studied.A system comprising only two coupling units,inter-connecting two consecutive vehicles,is modeled.Considered system has been fixed at one end and an excitation force is applied at the other end,to mimic a relative force transmission through combined coupler system.Simulation results obtained from this representative system show that,noticeable influence in in-train forces are expected due to the combined effect of inertia of couplers and intermittent impacts between couplers in the slack regime.Maximum amplitude of longitudinal reaction force,transferred from draft gear housing to vehicle body,is expected to be significantly higher than that predicted using existing models of coupler system.It is also observed that the couplers and knuckles are subjected to significant longitudinal and lateral contact forces,due to the intermittent impacts between couplers.Thus,accurate estimation of draft gear reaction force and impact forces between couplers are essential to design vehicle and coupler components,respectively.
文摘With the increase of Beijing urban rail transport network, the structure of the road network is becoming more complex, and passengers have more travel options. Together with the complex paths and different timetables, taking the last train is becoming much more difficult and unsuccessful. To avoid losses, we propose feasible suggestions to the last train with reasonable selling tickets system.
文摘The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.
文摘为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。