Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein...Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.展开更多
For structures with both random and fuzzy uncertainty,this paper presents a novel method for determining the membership function in fuzzy reliability with the Automatic Updating Extreme Response Surface(AUERS)method.I...For structures with both random and fuzzy uncertainty,this paper presents a novel method for determining the membership function in fuzzy reliability with the Automatic Updating Extreme Response Surface(AUERS)method.In the proposed method,fuzzy variables are initially converted into a value domain under the given cut level and the extreme point in the domain where the reliability reaches its extreme value is considered.Second,the Particle Swarm Optimization(PSO)algorithm is used to determine the extreme point according to the extreme responses for different sets of random sample inputs.A kriging response surface is subsequently constructed between the random variables and the corresponding extreme points.An automatic updating strategy is then introduced based on the Relative Mean Square Predicted Error(RMSPE)before performing every iteration of reliability analysis.By adding new sample points,the approximate quality of the kriging response surface is improved.Finally,reliability analysis is used to determine the reliability bound under the given cut level.The proposed method assures the accuracy and computation efficiency of the mixed uncertainty reliability analysis results while it prevents the solution from becoming trapped in a local optimum,which occurs in classical optimization methods.Two example analyses are used to demonstrate the validity and advantages of the proposed method.展开更多
基金support from the National Key R&D Program of China(Grant Nos.2021YFB2600605,2021YFB2600600)the Overseas Scholar Program in the Hebei Province(C20190514)+1 种基金from the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Project(ZZ2020-20)from the Youth Foundation of Hebei Science and Technology Research Project(QN2018108).
文摘Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.
基金supported by the National Natural Science Foundation of China(No.51675026)。
文摘For structures with both random and fuzzy uncertainty,this paper presents a novel method for determining the membership function in fuzzy reliability with the Automatic Updating Extreme Response Surface(AUERS)method.In the proposed method,fuzzy variables are initially converted into a value domain under the given cut level and the extreme point in the domain where the reliability reaches its extreme value is considered.Second,the Particle Swarm Optimization(PSO)algorithm is used to determine the extreme point according to the extreme responses for different sets of random sample inputs.A kriging response surface is subsequently constructed between the random variables and the corresponding extreme points.An automatic updating strategy is then introduced based on the Relative Mean Square Predicted Error(RMSPE)before performing every iteration of reliability analysis.By adding new sample points,the approximate quality of the kriging response surface is improved.Finally,reliability analysis is used to determine the reliability bound under the given cut level.The proposed method assures the accuracy and computation efficiency of the mixed uncertainty reliability analysis results while it prevents the solution from becoming trapped in a local optimum,which occurs in classical optimization methods.Two example analyses are used to demonstrate the validity and advantages of the proposed method.