Desktop calibration of automatic transmission(AT) is a method which can reduce cost, enhance efficiency and shorten the development periods of a vehicle effectively. We primary introduced the principle and approach of...Desktop calibration of automatic transmission(AT) is a method which can reduce cost, enhance efficiency and shorten the development periods of a vehicle effectively. We primary introduced the principle and approach of desktop calibration of AT based on the condition of coupling characteristics between engine and torque converter and obtained right point exactly. It is shown to agree with experimental measurements reasonably well. It was used in different applications abroad based on AT technology and achieved a good performance of the vehicle compared with traditional AT technology which primary focuses on the drivability, performance and fuel consumption.展开更多
In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies,...In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.展开更多
Automated control and calibration are important components in industrial process and in artificial intelligence system and robotics.In order to solve the problem of contact high-temperature strain precision measuremen...Automated control and calibration are important components in industrial process and in artificial intelligence system and robotics.In order to solve the problem of contact high-temperature strain precision measurement,this paper established an automatic calibration device for high-temperature strain gauges.The temperature of the high-temperature furnace is automatically controlled by the temperature control device.The electric cylinder is driven by the servo motor to apply the load to the calibration beam.The output signal of the high-temperature strain gauge,the thermocouple signal,and the displacement signal of the grating ruler are collected at the same time.The deformation measurement results obtained after temperature correction are used to calculate the theoretical mechanical strain,which are fed back to control the loading action to complete the automatic calibration process.Based on the above calibration device,the hightemperature strain measurement accuracy correction software is developed to calibrate the high-temperature strain gauge with multiparameters,and the curves of sensitivity coefficient,thermal output,zero drift,and creep characteristics with temperature are obtained,and a strain measurement accuracy compensation model is established.The high-temperature strain measurement experiment is carried out to verify that the modified model can meet the requirements in each temperature range.展开更多
Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibrati...Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibration is an essential procedure before the IMU is put in use,which is generally used to estimate the error parameters such as the bias,installation error,scale factor of the IMU.Currently,the manual one-by-one calibration is still the mostly used manner,which is low in efficiency,time-consuming,and easy to introduce mis-operation.Aiming at this issue,this paper designs an automatic batch calibration method for a set of IMUs.The designed automatic calibration master controller can control the turntable and the data acquisition system at the same time.Each data acquisition front-end can complete data acquisition of eight IMUs one time.And various scenarios of experimental tests have been carried out to validate the proposed design,such as the multi-position tests,the rate tests and swaying tests.The results illustrate the reliability of each function module and the feasibility automatic batch calibration.Compared with the traditional calibration method,the proposed design can reduce errors caused by the manual calibration and greatly improve the efficiency of IMU calibration.展开更多
The wobble errors caused by the imperfect integration of motion sensors and transducers in multibeam echo-sounder systems(MBES)manifest as high-frequency wobbles in swaths and hinder the accurate expression of high-re...The wobble errors caused by the imperfect integration of motion sensors and transducers in multibeam echo-sounder systems(MBES)manifest as high-frequency wobbles in swaths and hinder the accurate expression of high-resolution seabed micro-topography under a dynamic marine environment.There are many types of wobble errors with certain coupling among them.However,those current calibration methods ignore the coupling and are mainly manual adjustments.Therefore,we proposed an automatic calibration method with the coupling.First,given the independence of the transmitter and the receiver,the traditional georeferenced model is modified to improve the accuracy of footprint reduction.Secondly,based on the improved georeferenced model,the calibration model associated with motion scale,time delay,yaw misalignment,lever arm errors,and soundings is constructed.Finally,the genetic algorithm(GA)is used to search dynamically for the optimal estimation of the corresponding error parameters to realize the automatic calibration of wobble errors.The simulated data show that the accuracy of the calibrated data can be controlled within 0.2%of the water depth.The measured data show that after calibration,the maximum standard deviation of the depth is reduced by about 5.9%,and the mean standard deviation of the depth is reduced by about 11.2%.The proposed method has significance in the precise calibration of dynamic errors in shallow water multibeam bathymetrie s.展开更多
Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrolo...Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrological model based on the least action principle (HyMoLAP). The Downhill Simplex method is also known as the Nelder-Mead algorithm, which is a heuristic research method, is used to optimize the cost function on a given domain. The performance of the model is evaluated by the Nash Stucliffe Efficiency Index (NSE), the Root Mean Square Error (RMSE), the coefficient of determination (R2), the Mean Absolute Error (MAE). A comparative estimation is conducted using the Nash-Sutcliffe Modeling Efficiency Index and the mean relative error to evaluate the performance of the optimization method. It appears that the variation in water balance parameter values is acceptable. The simulated optimization method appears to be the best in terms of lower variability of parameter values during successive tests. The quality of the parameter sets obtained is good enough to impact the performance of the objective functions in a minimum number of iterations. We have analyzed the algorithm from a technical point of view, and we have carried out an experimental comparison between specific factors such as the model structure and the parameter’s values. The results obtained confirm the quality of the model (NSE = 0.90 and 0.75 respectively in calibration and validation) and allow us to evaluate the efficiency of the Nelder-Mead algorithm in the automatic calibration of the HyMoLAP model. The developed hybrid automatic calibration approach is therefore one of the promising ways to reduce computational time in rainfall-runoff modeling.展开更多
In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate ...In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate the proper functioning of the monitoring equipments, but do not allowed the determination of a calibration curve that allow the corrections of the acquired parameters. Thus, the development of a dedicated facility for in-situ calibration of weather stations, enabling simultaneous generation of a wide range of temperatures and pressures could offer important improvements in this framework, particularly if this facility is applied to high mountains monitoring stations where the weather stations calibrations could be very difficult. This paper will present the calibration chamber developed in the framework of the EMRP-METEOMET (Metrology for Meteorology) Project, which aims is to bring metrological traceability to high altitude meteorological instruments and through this experience will provide a general overview on the importance of the application of this methodology at different levels.展开更多
The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properti...The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properties of Alfvén waves.They found that an optimal offset line(OOL)exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs.Because no pure Alfvén waves exist in the interplanetary magnetic field,calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events.Here,we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset.This procedure includes three parts:(1)selecting potential Alfvénic fluctuation events,(2)obtaining the OOL,and(3)determining the zero offset.We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express.The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis-Smith method.One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler.Our automatic procedure could also be applied to find fluctuation events for the Davis-Smith method.展开更多
This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during e...This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during examinees prior testing. Disadvantage of the mentioned item calibration method is the item exposure; when test items become familiar to the examinees. To reduce the item exposure, automatic item generation method is used, where item models are being constructed based on already calibrated test items without losing already estimated item parameters. A technic of item model extraction method from the already calibrated and therefore exposed test items described, which can be used by the test item development specialists to integrate automatic item generation principles with the existing testing applications.展开更多
Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable...Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.展开更多
To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on...To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on XCP. In this system, it is possible that the master dynamically searching the slaves available on bus and data synchronization between master and slave is also achieved. Real-time measurement and on-line calibration can be executed during the running process of transmission control unit, so the calibration result is displayed in time. Calibration by true value and physical value are both available. Experimental results showed that this system operated stably and reliably and had strong timeout handling ability.展开更多
An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensi...An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.展开更多
Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason...Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason,a portable temperature sensor calibrator was developed,and it uses semiconductor refrigeration technology to increase and decrease temperature quickly. It uses an intelligent PID temperature controller as a control device to provide a stable temperature environment; it is small,light and easy to operate,and it provides technical support for the calibration of temperature sensors. The structure and working principle of this equipment were analyzed,and its performance was tested. All the indicators could meet the requirements of field calibration. The calibrator will provide a strong guarantee for the reliability of temperature data obtained at automatic meteorological stations.展开更多
文摘Desktop calibration of automatic transmission(AT) is a method which can reduce cost, enhance efficiency and shorten the development periods of a vehicle effectively. We primary introduced the principle and approach of desktop calibration of AT based on the condition of coupling characteristics between engine and torque converter and obtained right point exactly. It is shown to agree with experimental measurements reasonably well. It was used in different applications abroad based on AT technology and achieved a good performance of the vehicle compared with traditional AT technology which primary focuses on the drivability, performance and fuel consumption.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFC0402701)National Natural Science Foundation of China(No.51825902)
文摘In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.
文摘Automated control and calibration are important components in industrial process and in artificial intelligence system and robotics.In order to solve the problem of contact high-temperature strain precision measurement,this paper established an automatic calibration device for high-temperature strain gauges.The temperature of the high-temperature furnace is automatically controlled by the temperature control device.The electric cylinder is driven by the servo motor to apply the load to the calibration beam.The output signal of the high-temperature strain gauge,the thermocouple signal,and the displacement signal of the grating ruler are collected at the same time.The deformation measurement results obtained after temperature correction are used to calculate the theoretical mechanical strain,which are fed back to control the loading action to complete the automatic calibration process.Based on the above calibration device,the hightemperature strain measurement accuracy correction software is developed to calibrate the high-temperature strain gauge with multiparameters,and the curves of sensitivity coefficient,thermal output,zero drift,and creep characteristics with temperature are obtained,and a strain measurement accuracy compensation model is established.The high-temperature strain measurement experiment is carried out to verify that the modified model can meet the requirements in each temperature range.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibration is an essential procedure before the IMU is put in use,which is generally used to estimate the error parameters such as the bias,installation error,scale factor of the IMU.Currently,the manual one-by-one calibration is still the mostly used manner,which is low in efficiency,time-consuming,and easy to introduce mis-operation.Aiming at this issue,this paper designs an automatic batch calibration method for a set of IMUs.The designed automatic calibration master controller can control the turntable and the data acquisition system at the same time.Each data acquisition front-end can complete data acquisition of eight IMUs one time.And various scenarios of experimental tests have been carried out to validate the proposed design,such as the multi-position tests,the rate tests and swaying tests.The results illustrate the reliability of each function module and the feasibility automatic batch calibration.Compared with the traditional calibration method,the proposed design can reduce errors caused by the manual calibration and greatly improve the efficiency of IMU calibration.
基金Supported by the National Natural Science Foundation of China(Nos.41930535,41830540)the National Key R&D Program of China(No.2018YFC1405900)the SDUST Research Fund(No.2019TDJH103)。
文摘The wobble errors caused by the imperfect integration of motion sensors and transducers in multibeam echo-sounder systems(MBES)manifest as high-frequency wobbles in swaths and hinder the accurate expression of high-resolution seabed micro-topography under a dynamic marine environment.There are many types of wobble errors with certain coupling among them.However,those current calibration methods ignore the coupling and are mainly manual adjustments.Therefore,we proposed an automatic calibration method with the coupling.First,given the independence of the transmitter and the receiver,the traditional georeferenced model is modified to improve the accuracy of footprint reduction.Secondly,based on the improved georeferenced model,the calibration model associated with motion scale,time delay,yaw misalignment,lever arm errors,and soundings is constructed.Finally,the genetic algorithm(GA)is used to search dynamically for the optimal estimation of the corresponding error parameters to realize the automatic calibration of wobble errors.The simulated data show that the accuracy of the calibrated data can be controlled within 0.2%of the water depth.The measured data show that after calibration,the maximum standard deviation of the depth is reduced by about 5.9%,and the mean standard deviation of the depth is reduced by about 11.2%.The proposed method has significance in the precise calibration of dynamic errors in shallow water multibeam bathymetrie s.
文摘Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrological model based on the least action principle (HyMoLAP). The Downhill Simplex method is also known as the Nelder-Mead algorithm, which is a heuristic research method, is used to optimize the cost function on a given domain. The performance of the model is evaluated by the Nash Stucliffe Efficiency Index (NSE), the Root Mean Square Error (RMSE), the coefficient of determination (R2), the Mean Absolute Error (MAE). A comparative estimation is conducted using the Nash-Sutcliffe Modeling Efficiency Index and the mean relative error to evaluate the performance of the optimization method. It appears that the variation in water balance parameter values is acceptable. The simulated optimization method appears to be the best in terms of lower variability of parameter values during successive tests. The quality of the parameter sets obtained is good enough to impact the performance of the objective functions in a minimum number of iterations. We have analyzed the algorithm from a technical point of view, and we have carried out an experimental comparison between specific factors such as the model structure and the parameter’s values. The results obtained confirm the quality of the model (NSE = 0.90 and 0.75 respectively in calibration and validation) and allow us to evaluate the efficiency of the Nelder-Mead algorithm in the automatic calibration of the HyMoLAP model. The developed hybrid automatic calibration approach is therefore one of the promising ways to reduce computational time in rainfall-runoff modeling.
文摘In-situ calibrations of weather stations are usually performed by positioning standard instruments close to the station under calibration and comparing the obtained results. This procedure could be useful to evaluate the proper functioning of the monitoring equipments, but do not allowed the determination of a calibration curve that allow the corrections of the acquired parameters. Thus, the development of a dedicated facility for in-situ calibration of weather stations, enabling simultaneous generation of a wide range of temperatures and pressures could offer important improvements in this framework, particularly if this facility is applied to high mountains monitoring stations where the weather stations calibrations could be very difficult. This paper will present the calibration chamber developed in the framework of the EMRP-METEOMET (Metrology for Meteorology) Project, which aims is to bring metrological traceability to high altitude meteorological instruments and through this experience will provide a general overview on the importance of the application of this methodology at different levels.
基金financially supported by the Shenzhen Science and Technology Research Program(grant no.JCYJ2021032412141-2034)the National Natural Science Foundation of China(grant nos.41804157,41774171,41774167,41974205,41804157,and 41904156)+3 种基金financial support from the pre-research Project on Civil Aerospace Technologies(grant no.D020103)funded by the China National Space Administrationthe 111 Project(grant no.B18017)the Chinese Academy of Sciences Center for Excellence in Comparative Planetologythe Macao Foundation.
文摘The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properties of Alfvén waves.They found that an optimal offset line(OOL)exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs.Because no pure Alfvén waves exist in the interplanetary magnetic field,calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events.Here,we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset.This procedure includes three parts:(1)selecting potential Alfvénic fluctuation events,(2)obtaining the OOL,and(3)determining the zero offset.We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express.The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis-Smith method.One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler.Our automatic procedure could also be applied to find fluctuation events for the Davis-Smith method.
文摘This paper studies the technics of reducing item exposure by utilizing automatic item generation methods. Known test item calibration method uses item parameter estimation with the statistical data, collected during examinees prior testing. Disadvantage of the mentioned item calibration method is the item exposure; when test items become familiar to the examinees. To reduce the item exposure, automatic item generation method is used, where item models are being constructed based on already calibrated test items without losing already estimated item parameters. A technic of item model extraction method from the already calibrated and therefore exposed test items described, which can be used by the test item development specialists to integrate automatic item generation principles with the existing testing applications.
基金partially funded by Sao Paulo Research Foundation(FAPESP),Brazil,grant numbers#2015/18808-0,#2018/23064-8,#2019/23382-2.
文摘Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.
基金Supported by the National High Technology Research and Development Program of China("863" Program)(2012AA111713)
文摘To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on XCP. In this system, it is possible that the master dynamically searching the slaves available on bus and data synchronization between master and slave is also achieved. Real-time measurement and on-line calibration can be executed during the running process of transmission control unit, so the calibration result is displayed in time. Calibration by true value and physical value are both available. Experimental results showed that this system operated stably and reliably and had strong timeout handling ability.
基金supported by a grant (08-K1401-00610) from the Center of Nanoscale Mechatronics and Manufacturingone of the 21st Century Frontier Research Programs which are supported by the Ministry of Education,Science and Technology in Korea,Industry-University Partnership Laboratory Supporting Business"New Professor Support Program from Seoul National University of Technology"
文摘An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.
文摘Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason,a portable temperature sensor calibrator was developed,and it uses semiconductor refrigeration technology to increase and decrease temperature quickly. It uses an intelligent PID temperature controller as a control device to provide a stable temperature environment; it is small,light and easy to operate,and it provides technical support for the calibration of temperature sensors. The structure and working principle of this equipment were analyzed,and its performance was tested. All the indicators could meet the requirements of field calibration. The calibrator will provide a strong guarantee for the reliability of temperature data obtained at automatic meteorological stations.