This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generat...This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.展开更多
A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Auto...A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Automatic Mesh Generator and a Mesh Modifier. Pre-Mesh Generator produces the shape and sub-block information as input data of Automatic Mesh Generator by c arrying out various image processing with respect to the image information of th e drawing input using scanner. Automatic Mesh Generator generates mesh of trian gular elements in the arbitrarily shaped and multiple connected planar domain by using minimum necessary information. This generator has 3 methods of mesh gene ration for each sub-block, A) Regular Mesh Generation, B) Semi-Regular Mesh Ge neration and C) Irregular Mesh Generation. Any of them can be selected automati cally according to the external form of sub-block or the state of domain. Mesh Modifier projects and modifies the pattern of generated mesh by Automatic Mesh Generator as required. This system simplifies the user’s task while saving manp ower in carrying out the finite element analysis.展开更多
In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Ba...In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.展开更多
In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates ...In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.展开更多
A fundamental issue in CFD is the role of coordinates and,in particular,the search for“optimal”coordinates.This paper reviews and generalizes the recently developed unified coordinate system(UC).For one-dimensional ...A fundamental issue in CFD is the role of coordinates and,in particular,the search for“optimal”coordinates.This paper reviews and generalizes the recently developed unified coordinate system(UC).For one-dimensional flow,UC uses a material coordinate and thus coincides with Lagrangian system.For two-dimensional flow it uses a material coordinate,with the other coordinate determined so as to preserve mesh othorgonality(or the Jacobian),whereas for three-dimensional flow it uses two material coordinates,with the third one determined so as to preserve mesh skewness(or the Jacobian).The unified coordinate system combines the advantages of both Eulerian and the Lagrangian system and beyond.Specifically,the followings are shown in this paper.(a)For 1-D flow,Lagrangian system plus shock-adaptive Godunov scheme is superior to Eulerian system.(b)The governing equations in any moving multi-dimensional coordinates can be written as a system of closed conservation partial differential equations(PDE)by appending the time evolution equations–called geometric conservation laws–of the coefficients of the transformation(from Cartesian to the moving coordinates)to the physical conservation laws;consequently,effects of coordinate movement on the flow are fully accounted for.(c)The system of Lagrangian gas dynamics equations is written in conservation PDE form,thus providing a foundation for developing Lagrangian schemes as moving mesh schemes.(d)The Lagrangian system of gas dynamics equations in two-and three-dimension are shown to be only weakly hyperbolic,in direct contrast to the Eulerian system which is fully hyperbolic;hence the two systems are not equivalent to each other.(e)The unified coordinate system possesses the advantages of the Lagrangian system in that contact discontinuities(including material interfaces and free surfaces)are resolved sharply.(f)In using the UC,there is no need to generate a body-fitted mesh prior to computing flow past a body;the mesh is automatically generated by the flow.Numerical examples are given to confirm these properties.Relations of the UC approach with the Arbitrary-Lagrangian-Eulerian(ALE)approach and with various moving coordinates approaches are also clarified.展开更多
文摘This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.
文摘A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Automatic Mesh Generator and a Mesh Modifier. Pre-Mesh Generator produces the shape and sub-block information as input data of Automatic Mesh Generator by c arrying out various image processing with respect to the image information of th e drawing input using scanner. Automatic Mesh Generator generates mesh of trian gular elements in the arbitrarily shaped and multiple connected planar domain by using minimum necessary information. This generator has 3 methods of mesh gene ration for each sub-block, A) Regular Mesh Generation, B) Semi-Regular Mesh Ge neration and C) Irregular Mesh Generation. Any of them can be selected automati cally according to the external form of sub-block or the state of domain. Mesh Modifier projects and modifies the pattern of generated mesh by Automatic Mesh Generator as required. This system simplifies the user’s task while saving manp ower in carrying out the finite element analysis.
文摘In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.
基金supported by the National Natural Science Foundation of China (No. 10972162)
文摘In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.
基金supported by a grant(HKUST6138/01P)from the Research Grants Council of Hong Kong.
文摘A fundamental issue in CFD is the role of coordinates and,in particular,the search for“optimal”coordinates.This paper reviews and generalizes the recently developed unified coordinate system(UC).For one-dimensional flow,UC uses a material coordinate and thus coincides with Lagrangian system.For two-dimensional flow it uses a material coordinate,with the other coordinate determined so as to preserve mesh othorgonality(or the Jacobian),whereas for three-dimensional flow it uses two material coordinates,with the third one determined so as to preserve mesh skewness(or the Jacobian).The unified coordinate system combines the advantages of both Eulerian and the Lagrangian system and beyond.Specifically,the followings are shown in this paper.(a)For 1-D flow,Lagrangian system plus shock-adaptive Godunov scheme is superior to Eulerian system.(b)The governing equations in any moving multi-dimensional coordinates can be written as a system of closed conservation partial differential equations(PDE)by appending the time evolution equations–called geometric conservation laws–of the coefficients of the transformation(from Cartesian to the moving coordinates)to the physical conservation laws;consequently,effects of coordinate movement on the flow are fully accounted for.(c)The system of Lagrangian gas dynamics equations is written in conservation PDE form,thus providing a foundation for developing Lagrangian schemes as moving mesh schemes.(d)The Lagrangian system of gas dynamics equations in two-and three-dimension are shown to be only weakly hyperbolic,in direct contrast to the Eulerian system which is fully hyperbolic;hence the two systems are not equivalent to each other.(e)The unified coordinate system possesses the advantages of the Lagrangian system in that contact discontinuities(including material interfaces and free surfaces)are resolved sharply.(f)In using the UC,there is no need to generate a body-fitted mesh prior to computing flow past a body;the mesh is automatically generated by the flow.Numerical examples are given to confirm these properties.Relations of the UC approach with the Arbitrary-Lagrangian-Eulerian(ALE)approach and with various moving coordinates approaches are also clarified.