期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Active Learning Strategies for Textual Dataset-Automatic Labelling
1
作者 Sher Muhammad Daudpota Saif Hassan +2 位作者 Yazeed Alkhurayyif Abdullah Saleh Alqahtani Muhammad Haris Aziz 《Computers, Materials & Continua》 SCIE EI 2023年第8期1409-1422,共14页
The Internet revolution has resulted in abundant data from various sources,including social media,traditional media,etcetera.Although the availability of data is no longer an issue,data labelling for exploiting it in ... The Internet revolution has resulted in abundant data from various sources,including social media,traditional media,etcetera.Although the availability of data is no longer an issue,data labelling for exploiting it in supervised machine learning is still an expensive process and involves tedious human efforts.The overall purpose of this study is to propose a strategy to automatically label the unlabeled textual data with the support of active learning in combination with deep learning.More specifically,this study assesses the performance of different active learning strategies in automatic labelling of the textual dataset at sentence and document levels.To achieve this objective,different experiments have been performed on the publicly available dataset.In first set of experiments,we randomly choose a subset of instances from training dataset and train a deep neural network to assess performance on test set.In the second set of experiments,we replace the random selection with different active learning strategies to choose a subset of the training dataset to train the same model and reassess its performance on test set.The experimental results suggest that different active learning strategies yield performance improvement of 7% on document level datasets and 3%on sentence level datasets for auto labelling. 展开更多
关键词 Active learning automatic labelling textual datasets
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部