To model the operation of food traceability, features of food supply chain are studied. The aim of the paper is to build an abstract model of food traceability, and to gain better understanding of food traceability an...To model the operation of food traceability, features of food supply chain are studied. The aim of the paper is to build an abstract model of food traceability, and to gain better understanding of food traceability and food safety. Based on the analysis of consumers' behavior of searching for traceability information, a finite state automaton for food traceability is presented by using automata theory. The states of the food supply chain are represented by a state transition diagram. The automaton in this paper simulates the entire food supply chain and provides a theoretical basis for the behavior description and structural design of a food traceability system.展开更多
Cellular Automaton (CA) based traffic flow models have been extensively studied due to their effectiveness and simplicity in recent years. This paper develops a discrete time Markov chain (DTMC) analytical framewo...Cellular Automaton (CA) based traffic flow models have been extensively studied due to their effectiveness and simplicity in recent years. This paper develops a discrete time Markov chain (DTMC) analytical framework for a Nagel-Schreckenberg and Fukui Ishibashi combined CA model (W^2H traffic flow model) from microscopic point of view to capture the macroscopic steady state speed distributions. The inter-vehicle spacing Maxkov chain and the steady state speed Markov chain are proved to be irreducible and ergodic. The theoretical speed probability distributions depending on the traffic density and stochastic delay probability are in good accordance with numerical simulations. The derived fundamental diagram of the average speed from theoretical speed distributions is equivalent to the results in the previous work.展开更多
为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能...为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能提高道路通行能力,随机仿真实验验证了理论推导的正确性;最后,引入考虑车辆排列方式的相对熵,从而定量描述异质车流的有序性,阐明了智能网联车辆(connected and autonomous vehicle,CAV)改善交通状况的本质原因.研究结果表明:随着智能网联车渗透率的增加,通行能力增加,在智能网联化前期,渗透率的增加对通行能力提升较小,最高仅提升23.5%,中、后期通行能力最高能提升125.0%;在一定交通密度下,CAV渗透率与流量呈现正相关,相对熵与流量呈现负相关;智能网联车处于分离态时相对熵较小,分离态对随机混合的通行能力的提升随着CAV渗透率的增加而降低.展开更多
基金supported by the Science and Technology Public Projects of Sichuan under Grant No. 07GF001-0032010 Ministry of Science and Technology Innovation Fund for SMEs under Grant No. 10C26225123015
文摘To model the operation of food traceability, features of food supply chain are studied. The aim of the paper is to build an abstract model of food traceability, and to gain better understanding of food traceability and food safety. Based on the analysis of consumers' behavior of searching for traceability information, a finite state automaton for food traceability is presented by using automata theory. The states of the food supply chain are represented by a state transition diagram. The automaton in this paper simulates the entire food supply chain and provides a theoretical basis for the behavior description and structural design of a food traceability system.
基金supported by the National Basic Research Program of China (Grant No 2007CB310800)the National Natural Science Foundation of China (Grant Nos 60772150 and 60703018)the National High Technology Research and Development Program of China (Grant No 2008AA01Z208)
文摘Cellular Automaton (CA) based traffic flow models have been extensively studied due to their effectiveness and simplicity in recent years. This paper develops a discrete time Markov chain (DTMC) analytical framework for a Nagel-Schreckenberg and Fukui Ishibashi combined CA model (W^2H traffic flow model) from microscopic point of view to capture the macroscopic steady state speed distributions. The inter-vehicle spacing Maxkov chain and the steady state speed Markov chain are proved to be irreducible and ergodic. The theoretical speed probability distributions depending on the traffic density and stochastic delay probability are in good accordance with numerical simulations. The derived fundamental diagram of the average speed from theoretical speed distributions is equivalent to the results in the previous work.
文摘为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能提高道路通行能力,随机仿真实验验证了理论推导的正确性;最后,引入考虑车辆排列方式的相对熵,从而定量描述异质车流的有序性,阐明了智能网联车辆(connected and autonomous vehicle,CAV)改善交通状况的本质原因.研究结果表明:随着智能网联车渗透率的增加,通行能力增加,在智能网联化前期,渗透率的增加对通行能力提升较小,最高仅提升23.5%,中、后期通行能力最高能提升125.0%;在一定交通密度下,CAV渗透率与流量呈现正相关,相对熵与流量呈现负相关;智能网联车处于分离态时相对熵较小,分离态对随机混合的通行能力的提升随着CAV渗透率的增加而降低.