期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Automotive Lighting Systems Based on Luminance/Intensity Grids: A Proposal Based on Real-Time Monitoring and Control for Safer Driving
1
作者 Antonio Peña-García Huchang Liao 《Computers, Materials & Continua》 SCIE EI 2021年第3期2373-2383,共11页
The requirements for automotive lighting systems,especially the light patterns ensuring driver perception,are based on criteria related to the headlamps,rather than the light perceived by drivers and road users.Conseq... The requirements for automotive lighting systems,especially the light patterns ensuring driver perception,are based on criteria related to the headlamps,rather than the light perceived by drivers and road users.Consequently,important factors such as pavement reflectance,driver age,or time of night,are largely ignored.Other factors such as presence of other vehicles,vehicle speed and weather conditions are considered by the Adaptive Driving Beam(ADB)and Adaptive Front-lighting System(AFS)respectively,though with no information regarding the visual perception of drivers and other road users.Evidently,it is simpler to simulate and measure the light emitted by the lamps than the light reflected by the pavement or emitted by other vehicles.However the current technology in cameras and light sensors,communication protocols,and control of Light Emitting Diodes(LED),combined with decision-making techniques applied to large amounts of data,can open a new era in the operation of headlamps and thus ensure the visual needs of drivers in real time and under actual road conditions.The solution lies in an interaction road-sensor-headlamp,which is not based on the light emitted by headlamps,but rather on the light perceived by the drivers.This study thus proposes a dual grid based on luminance and luminous intensity,which would manage the headlamps by optimizing driver perception and the safety of all road users. 展开更多
关键词 Vehicle systems optical sensing LED control automotive lighting
下载PDF
Recent research progress of master mold manufacturing by nanoimprint technique for the novel microoptics devices
2
作者 Yuhang LIU Jianjun LIN +8 位作者 Zuohuan HU Guoli GAO Bingyang WANG Liuyi WANG Zhiyuan PAN Jianfei JIA Qinwei YIN Dengji GUO Xujin WANG 《Frontiers of Materials Science》 SCIE CSCD 2022年第3期83-100,共18页
The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.Ho... The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.However,the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development.The manufacturing technology of micro/nanostructures,methods of display mechanisms,display materials,and mass production of display devices are major technical obstacles.To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs,this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices,particularly AR glasses,new-generation light-emitting diode car lighting,and naked-eye 3D display mechanisms,and their manufacturing techniques of master molds.The focus is on the relationships among the manufacturing process,microstructure,and display of a new optical device.Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices,and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed. 展开更多
关键词 master mold manufacturing nanoimprint technique augmented reality automotive lighting naked-eye 3D display
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部