Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspec...Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspects are presented. The fuzzy control is known to have the ability to deal with nonlinearities without having to use advanced mathematics. The LQR integrated fuzzy control (LQRIFC) simultaneously makes use of the good performance of LQR in the region close to switching curve, and the effectiveness of fuzzy control in region away from switching curve. A new analysis of the fuzzy system behavior presented helps to make possible precise integration of LQR features into fuzzy control. The LQRIFC is verified by simulation to suppress the uncertainty instability more effectively than the LQR besides minimizing the time of the mission proposed.展开更多
针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CA...针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CAN收发器CTM1050存在的信号稳定性不足、波特率精准度低等问题,提出并实现了一种硬件电路的替代方案,提高了数据通讯的时效性和稳定性。基于CAN2.0B扩展帧,设计了自动操舵系统内部CAN总线协议。该协议可根据报文信息优先级分配标识帧,保证了总线数据的有序传输。实验结果表明,该通讯模块功能使用正常且通讯效果良好,具有一定通用性,可在多种需要转换的设备系统上推广使用。展开更多
Accounting for the missile autopilot as second-order dynamics, an observer-based guidance law is designed based on the dynamic surface control method. Some first-order low-pass filters are introduced into the design p...Accounting for the missile autopilot as second-order dynamics, an observer-based guidance law is designed based on the dynamic surface control method. Some first-order low-pass filters are introduced into the design process to avoid the occurrence of high-order derivatives of the line of sight angle in the expression of guidance law such that it can be implemented in practical applications. The proposed guidance law is effective in compensating the bad influence of the autopilot lag on guidance accuracy. In the simulations of intercepting non maneuvering targets, targets with step acceleration, and targets with sinusoidal acceleration respectively, the guidance law is compared with the adaptive sliding mode guidance law in the presence of missile autopilot lag. The simulation results show that the proposed guidance law is able to guide a missile to accurately intercept a maneuvering target, even if it escapes in a great and fast maneuver and the autopilot has a relatively large lag.展开更多
In this paper,an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback,the roll angle,normal overloads and angular rates were con...In this paper,an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback,the roll angle,normal overloads and angular rates were considered as state variables of the autopilot,and a parametric sliding mode controller was designed via feedback linearization. A novel parametric adaptation law was put forward to estimate the nonlinear timevarying parameter perturbations in real time based on Lyapunov stability theory. A sliding mode boundary layer theory was adopted to smooth the discontinuity of control variables and eliminate the control chattering. The simulation was presented for the roll angle and overload commands tracking in different configuration schemes. The results indicated that the controlled system has robust dynamic tracking performance in condition of the large-scale aerodynamic parametric variety resulted from variable-swept wings.展开更多
The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output fe...The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based o...Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.展开更多
A novel stability computation approach for tactical missile autopilots is detailed. The limi- tations of traditional stability margins are exhibited. Then the vector margin is introduced and com- pared with sensitivit...A novel stability computation approach for tactical missile autopilots is detailed. The limi- tations of traditional stability margins are exhibited. Then the vector margin is introduced and com- pared with sensitivity function to show their essential relationship. The longitudinal three-loop auto- pilot for tactical missiles is presented and used as the baseline for all the available linear autopilots. Ten linear autopilot topologies using all the measurable feedback components are given with the iden- tical closed-loop characteristic equation and time-domain step response. However, the stability of the ten autopilots differs when considering the actuator dynamics, which limits their application. Then vector margin method is adopted to compute and evaluate the stability of all available autopi- lots. The analysis and computation results show that the vector margin method could better evaluate autopilot stability.展开更多
The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means...The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means of simulation, it is concluded that the guidance accuracy is mainly determined by the slowest subsystem among different system dynamics. For air-to-ground missiles, with limited terminal guidance time, the control scheme of acceleration autopilot combined with proportional navigation guidance (PNG) law is the better choice.展开更多
According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamic...According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.展开更多
The article considers negative effects of mechanical oscillations of a fuselage on the flying machine autopilot. The dynamic model of control system of flight is made which provides stability and compensates the mecha...The article considers negative effects of mechanical oscillations of a fuselage on the flying machine autopilot. The dynamic model of control system of flight is made which provides stability and compensates the mechanical oscillations arising in flight of flying machine with the autopilot.展开更多
The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control syst...The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.展开更多
文摘Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspects are presented. The fuzzy control is known to have the ability to deal with nonlinearities without having to use advanced mathematics. The LQR integrated fuzzy control (LQRIFC) simultaneously makes use of the good performance of LQR in the region close to switching curve, and the effectiveness of fuzzy control in region away from switching curve. A new analysis of the fuzzy system behavior presented helps to make possible precise integration of LQR features into fuzzy control. The LQRIFC is verified by simulation to suppress the uncertainty instability more effectively than the LQR besides minimizing the time of the mission proposed.
文摘针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CAN收发器CTM1050存在的信号稳定性不足、波特率精准度低等问题,提出并实现了一种硬件电路的替代方案,提高了数据通讯的时效性和稳定性。基于CAN2.0B扩展帧,设计了自动操舵系统内部CAN总线协议。该协议可根据报文信息优先级分配标识帧,保证了总线数据的有序传输。实验结果表明,该通讯模块功能使用正常且通讯效果良好,具有一定通用性,可在多种需要转换的设备系统上推广使用。
基金Sponsored by the Natural Science Foundation of China(Grant No.61174203)the Program for New Century Excellent Talents in University(Grant No.NCET-08-0153)the Aviation Science Foundation of China(Grant No.20110177002)
文摘Accounting for the missile autopilot as second-order dynamics, an observer-based guidance law is designed based on the dynamic surface control method. Some first-order low-pass filters are introduced into the design process to avoid the occurrence of high-order derivatives of the line of sight angle in the expression of guidance law such that it can be implemented in practical applications. The proposed guidance law is effective in compensating the bad influence of the autopilot lag on guidance accuracy. In the simulations of intercepting non maneuvering targets, targets with step acceleration, and targets with sinusoidal acceleration respectively, the guidance law is compared with the adaptive sliding mode guidance law in the presence of missile autopilot lag. The simulation results show that the proposed guidance law is able to guide a missile to accurately intercept a maneuvering target, even if it escapes in a great and fast maneuver and the autopilot has a relatively large lag.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11176012)Aviation Science Foundation of China(Grant No.20110159001)
文摘In this paper,an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback,the roll angle,normal overloads and angular rates were considered as state variables of the autopilot,and a parametric sliding mode controller was designed via feedback linearization. A novel parametric adaptation law was put forward to estimate the nonlinear timevarying parameter perturbations in real time based on Lyapunov stability theory. A sliding mode boundary layer theory was adopted to smooth the discontinuity of control variables and eliminate the control chattering. The simulation was presented for the roll angle and overload commands tracking in different configuration schemes. The results indicated that the controlled system has robust dynamic tracking performance in condition of the large-scale aerodynamic parametric variety resulted from variable-swept wings.
文摘The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
基金supported by the Aviation Science Foundation(2013ZC12004)
文摘Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘A novel stability computation approach for tactical missile autopilots is detailed. The limi- tations of traditional stability margins are exhibited. Then the vector margin is introduced and com- pared with sensitivity function to show their essential relationship. The longitudinal three-loop auto- pilot for tactical missiles is presented and used as the baseline for all the available linear autopilots. Ten linear autopilot topologies using all the measurable feedback components are given with the iden- tical closed-loop characteristic equation and time-domain step response. However, the stability of the ten autopilots differs when considering the actuator dynamics, which limits their application. Then vector margin method is adopted to compute and evaluate the stability of all available autopi- lots. The analysis and computation results show that the vector margin method could better evaluate autopilot stability.
文摘The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means of simulation, it is concluded that the guidance accuracy is mainly determined by the slowest subsystem among different system dynamics. For air-to-ground missiles, with limited terminal guidance time, the control scheme of acceleration autopilot combined with proportional navigation guidance (PNG) law is the better choice.
基金Sponsored by National Ministries and Commissions Research Program in Advance (102080403)
文摘According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.
文摘The article considers negative effects of mechanical oscillations of a fuselage on the flying machine autopilot. The dynamic model of control system of flight is made which provides stability and compensates the mechanical oscillations arising in flight of flying machine with the autopilot.
基金supported by the National Natural Science Foundation of China(11202024)
文摘The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.