In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,part...In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.展开更多
Within the approximations of spherical lattice cell, central-field, and relativistic Fermi statis- tics, an algorithm with average atom model is presented to calculate the electronic energy levels and equation of stat...Within the approximations of spherical lattice cell, central-field, and relativistic Fermi statis- tics, an algorithm with average atom model is presented to calculate the electronic energy levels and equation of state for hot and dense matter at arbitrary densities and temperatures. Choosing Zink's analytical potential as initial potential, we have solved the Dirac-Slater equation which satisfies the Weigner-Seitz boundary condition. The electronic energy bands are not taken into account. Tak- ing energy level degeneracy as a continuous function of density, we have considered the pressure ionization effects for highly dense matter. Results for ^(13)Al atom are shown.展开更多
Based on the detailed configuration accounting (DCA) model, a method is developed to include the resonant photoionization and the excitation-autoionization in the non-local thermodynamical equilibrium (NLTE) average a...Based on the detailed configuration accounting (DCA) model, a method is developed to include the resonant photoionization and the excitation-autoionization in the non-local thermodynamical equilibrium (NLTE) average atom (AA) model. Using this new model, the mean charge states and the opacity are calculated for NLTE high- plasmas and compared with other results. The agreement with AA model is poor at low electron density. The present results agree well with those of DCA model within 10%. The calculations show that the NLTE effects on opacity are strong.展开更多
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field.Here,the negative thermal expansion of NbF_(3)and NbOF_(2)was predicted by first-principles calculation wit...Thermal expansion control is always an obstructive factor and challenging in high precision engineering field.Here,the negative thermal expansion of NbF_(3)and NbOF_(2)was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA).We studied the total charge density,thermal vibration,and lattice dynamic to investigate the thermal expansion mechanism.We found that the presence of O induced the relatively strong covalent bond in NbOF_(2),thus weakening the transverse vibration of F and O in NbOF_(2),compared with the case of NbF_(3).In this study,we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds,but also provides an insight on thermal expansion control by designing chemical bond type.展开更多
We present the preliminary results of our code OPAQS(opacity calculation using quantum statistical model) that is based on the self consistent Hartree-Fock-Slater model for the average atom. The code is capable of p...We present the preliminary results of our code OPAQS(opacity calculation using quantum statistical model) that is based on the self consistent Hartree-Fock-Slater model for the average atom. The code is capable of performing robust calculations of average charge state, frequency-dependent and mean opacities. The accuracy of the atomic model is verified by comparing the calculations of average charge state with various published results. The monochromatic opacities for iron computed at different sets of temperatures and densities are compared with LEDCOP. The Rosseland and Planck opacities for iron and aluminum are validated with some state-of-the-art codes. The results are in good agreement with the published data.展开更多
High pressure investigations of matter involve the study of strong shock wave dynamics within the materials which gives rise to many thermal effects leading to dissociation of molecules,ionization of atoms,and radiati...High pressure investigations of matter involve the study of strong shock wave dynamics within the materials which gives rise to many thermal effects leading to dissociation of molecules,ionization of atoms,and radiation emission,etc.The response of materials experiencing a strong shock can be determined by its shock Hugoniot calculations which are frequently applied in numerical and experimental studies in inertial confinement fusion,laboratory astrophysical plasma,etc.These studies involve high energy density plasmas in which the radiation plays an important role in determining the energy deposition and maximum compressibility achieved by the shock within material.In this study,we present an investigation for the effect of radiation pressure on the maximum compressibility of the material using shock Hugoniot calculations.In shock Hugoniot calculations,an equation of state(EOS)is developed in which electronic contributions for EOS calculations are taken from an improved screened hydrogenic model with−l splitting(I-SHML)[High Energy Density Physics(2018)2648]under local thermodynamic equilibrium(LTE)conditions.The thermal ionic part calculations are adopted from the state of the art Cowan model while the cold ionic contributions are adopted from the scaled binding energy model.The Shock Hugoniot calculations are carried out for sodium and iron plasmas and our calculated results show excellent agreement with published results obtained by using either sophisticated self-consistent models or the first principle study.展开更多
Ion population fraction(IPF) calculations are very important to understand the radiative spectrum emitted from the hot dense matter. IPF calculations require detailed knowledge of all the ions and correlation intera...Ion population fraction(IPF) calculations are very important to understand the radiative spectrum emitted from the hot dense matter. IPF calculations require detailed knowledge of all the ions and correlation interactions between the electrons of an ion which are present in a plasma environment. The average atom models, e.g., screened hydrogenic model with l-splitting(SHML), now have the capabilities for such calculations and are becoming more popular for in line plasma calculations. In our previous work [Ali A, Shabbir Naz G, Shahzad M S, Kouser R, Rehman A and Nasim M H 2018 High Energy Density Phys. 26 48], we have improved the continuum lowering model and included the exchange and correlation effects in SHML. This study presents the calculation of IPF using classical theory of fluctuation for our improved screened hydrogenic model with l-splitting(I-SHML) under local thermodynamic equilibrium conditions for iron and aluminum plasma over a wide range of densities and temperatures. We have compared our results with other models and have found a very good agreement among them.展开更多
The Lande g-factor of a free atom determines the effective magnetic moment of an electron or atom with both spin and orbital angular momentum,which can be calculated by Lande formula,for a transition metal ion in the ...The Lande g-factor of a free atom determines the effective magnetic moment of an electron or atom with both spin and orbital angular momentum,which can be calculated by Lande formula,for a transition metal ion in the crystal field,the spin-orbital interaction can mix the non-zero orbital angular momentum of excited states with the"pure spin"ground state,resulting in an effective g-factor.Thus,the ability to probe the fine structure of the g-factor allows us to understand the internal spin properties of a magnetic system,such as the spin-orbital interaction.However,for molecular systems,traditional experimental methods for g-factor measurement,like EPR.展开更多
Zero thermal expansion materials are important for the practical applications due to their shape stability as changing temperature.The reported concept of average atomic volume is an available method to hunt new zero ...Zero thermal expansion materials are important for the practical applications due to their shape stability as changing temperature.The reported concept of average atomic volume is an available method to hunt new zero thermal expansion materials.Here,according to this concept,a tetragonal tungstate Cs_(2)W_(3)O_(10)with zero expansion has been found.There is no structure phase transition as increasing temperature from 150 K to 573 K.The coefficient of thermal expansion of axes and volume areαa=0.0074×10^(-6)K^(-1),αc=1.63×10^(-6)K^(-1),andαV=1.60×10^(-6)K^(-1),respectively,in the temperature range of 150~573 K.The temperature-and pressure-dependent Raman spectra reveal that the vibrations of WO6octahedra libration modes with positive total anharmonicity and W-O-W bending mode with negative Grüneisen parameter are possibly the origin of zero thermal expansion in Cs_(2)W_(3)O_(10).展开更多
基金Project (51071181) supported by the National Natural Science Foundation of ChinaProject (2010FJ4034) supported by Natural Science Foundation of Hunan Province,China
文摘In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.
文摘Within the approximations of spherical lattice cell, central-field, and relativistic Fermi statis- tics, an algorithm with average atom model is presented to calculate the electronic energy levels and equation of state for hot and dense matter at arbitrary densities and temperatures. Choosing Zink's analytical potential as initial potential, we have solved the Dirac-Slater equation which satisfies the Weigner-Seitz boundary condition. The electronic energy bands are not taken into account. Tak- ing energy level degeneracy as a continuous function of density, we have considered the pressure ionization effects for highly dense matter. Results for ^(13)Al atom are shown.
文摘Based on the detailed configuration accounting (DCA) model, a method is developed to include the resonant photoionization and the excitation-autoionization in the non-local thermodynamical equilibrium (NLTE) average atom (AA) model. Using this new model, the mean charge states and the opacity are calculated for NLTE high- plasmas and compared with other results. The agreement with AA model is poor at low electron density. The present results agree well with those of DCA model within 10%. The calculations show that the NLTE effects on opacity are strong.
基金the National Natural Science Foundation of China(Grant Nos.11774078 and 21905252)China Postdoctoral Science Foundation(Grant No.2019M652558)Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China(Grant No.10094100510025).
文摘Thermal expansion control is always an obstructive factor and challenging in high precision engineering field.Here,the negative thermal expansion of NbF_(3)and NbOF_(2)was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA).We studied the total charge density,thermal vibration,and lattice dynamic to investigate the thermal expansion mechanism.We found that the presence of O induced the relatively strong covalent bond in NbOF_(2),thus weakening the transverse vibration of F and O in NbOF_(2),compared with the case of NbF_(3).In this study,we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds,but also provides an insight on thermal expansion control by designing chemical bond type.
文摘We present the preliminary results of our code OPAQS(opacity calculation using quantum statistical model) that is based on the self consistent Hartree-Fock-Slater model for the average atom. The code is capable of performing robust calculations of average charge state, frequency-dependent and mean opacities. The accuracy of the atomic model is verified by comparing the calculations of average charge state with various published results. The monochromatic opacities for iron computed at different sets of temperatures and densities are compared with LEDCOP. The Rosseland and Planck opacities for iron and aluminum are validated with some state-of-the-art codes. The results are in good agreement with the published data.
文摘High pressure investigations of matter involve the study of strong shock wave dynamics within the materials which gives rise to many thermal effects leading to dissociation of molecules,ionization of atoms,and radiation emission,etc.The response of materials experiencing a strong shock can be determined by its shock Hugoniot calculations which are frequently applied in numerical and experimental studies in inertial confinement fusion,laboratory astrophysical plasma,etc.These studies involve high energy density plasmas in which the radiation plays an important role in determining the energy deposition and maximum compressibility achieved by the shock within material.In this study,we present an investigation for the effect of radiation pressure on the maximum compressibility of the material using shock Hugoniot calculations.In shock Hugoniot calculations,an equation of state(EOS)is developed in which electronic contributions for EOS calculations are taken from an improved screened hydrogenic model with−l splitting(I-SHML)[High Energy Density Physics(2018)2648]under local thermodynamic equilibrium(LTE)conditions.The thermal ionic part calculations are adopted from the state of the art Cowan model while the cold ionic contributions are adopted from the scaled binding energy model.The Shock Hugoniot calculations are carried out for sodium and iron plasmas and our calculated results show excellent agreement with published results obtained by using either sophisticated self-consistent models or the first principle study.
文摘Ion population fraction(IPF) calculations are very important to understand the radiative spectrum emitted from the hot dense matter. IPF calculations require detailed knowledge of all the ions and correlation interactions between the electrons of an ion which are present in a plasma environment. The average atom models, e.g., screened hydrogenic model with l-splitting(SHML), now have the capabilities for such calculations and are becoming more popular for in line plasma calculations. In our previous work [Ali A, Shabbir Naz G, Shahzad M S, Kouser R, Rehman A and Nasim M H 2018 High Energy Density Phys. 26 48], we have improved the continuum lowering model and included the exchange and correlation effects in SHML. This study presents the calculation of IPF using classical theory of fluctuation for our improved screened hydrogenic model with l-splitting(I-SHML) under local thermodynamic equilibrium conditions for iron and aluminum plasma over a wide range of densities and temperatures. We have compared our results with other models and have found a very good agreement among them.
文摘The Lande g-factor of a free atom determines the effective magnetic moment of an electron or atom with both spin and orbital angular momentum,which can be calculated by Lande formula,for a transition metal ion in the crystal field,the spin-orbital interaction can mix the non-zero orbital angular momentum of excited states with the"pure spin"ground state,resulting in an effective g-factor.Thus,the ability to probe the fine structure of the g-factor allows us to understand the internal spin properties of a magnetic system,such as the spin-orbital interaction.However,for molecular systems,traditional experimental methods for g-factor measurement,like EPR.
基金supported by the National Natural Science Foundation of China(Nos.22071221,21905252)Natural Science Foundation of Henan Province(Nos.212300410086,222301420040 and 222300420325)。
文摘Zero thermal expansion materials are important for the practical applications due to their shape stability as changing temperature.The reported concept of average atomic volume is an available method to hunt new zero thermal expansion materials.Here,according to this concept,a tetragonal tungstate Cs_(2)W_(3)O_(10)with zero expansion has been found.There is no structure phase transition as increasing temperature from 150 K to 573 K.The coefficient of thermal expansion of axes and volume areαa=0.0074×10^(-6)K^(-1),αc=1.63×10^(-6)K^(-1),andαV=1.60×10^(-6)K^(-1),respectively,in the temperature range of 150~573 K.The temperature-and pressure-dependent Raman spectra reveal that the vibrations of WO6octahedra libration modes with positive total anharmonicity and W-O-W bending mode with negative Grüneisen parameter are possibly the origin of zero thermal expansion in Cs_(2)W_(3)O_(10).