We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-ave...We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.展开更多
Many factors affect the vehicular fuel consumption rate. The most significant traffic-related ones are speed, number of stops, speed noise, and acceleration noise (acceleration standard deviation). Fuel consumption mo...Many factors affect the vehicular fuel consumption rate. The most significant traffic-related ones are speed, number of stops, speed noise, and acceleration noise (acceleration standard deviation). Fuel consumption models for both urban and highway traffic are used to evaluate the effect of these factors. Previous literature shows the speed and the acceleration of vehicles as well as the aerodynamic effects are the most commonly used variables in the highway fuel consumption mo dels. However, most existing models are based on the average or cruising speed and the effect of speed variation is by-and-large ignored. Incorporating the speed noise as a variable in the prediction models seems impractical because measuring it is cumbersome. However, knowing the relation between speed and speed noise may allow including the effect of speed noise in the model indirectly. To that end, this study examines the relation between speed and speed noise. The resulting mathematical relation is used to incorporate the speed noise effects in the fuel consumption model.展开更多
There is considerable safety potential in ensuring that motorists respect the speed limits. High speeds increase the number and severity of accidents. Technological development over the last 20 years has enabled the d...There is considerable safety potential in ensuring that motorists respect the speed limits. High speeds increase the number and severity of accidents. Technological development over the last 20 years has enabled the development of systems that allow automatic speed control. The first generation of automatic speed control was point-based, but in recent years a potentially more effective alternative automatic speed control method has been introduced. This method is based upon records of drivers’ average travel speed over selected sections of the road and is normally called average speed control or section control. This article discusses the different methods for automatic speed control and presents an evaluation of the safety effects of average speed control, documented through changes in speed levels and accidents before and after the implementation of average speed control at selected sites in the UK. The study demonstrates that the introduction of average speed control results in statistically significant and substantial reductions both in speed and in number of accidents. The evaluation indicates that average speed control has a higher safety effect than point-based automatic speed control.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu...Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.展开更多
This study aimed to determine the appropriate nutritional intakes and dietary habits of high school-aged cross-country skiers and speed skaters. The subjects, all high school students from N Prefecture, included 18 ma...This study aimed to determine the appropriate nutritional intakes and dietary habits of high school-aged cross-country skiers and speed skaters. The subjects, all high school students from N Prefecture, included 18 male cross-country skiers, 5 male speed skaters, 10 female cross-country ski players and 4 female speed skaters. Physical measurements, food intake frequency survey results, bone mineral density and exercise stress test outcomes, and lactic acid measurements were evaluated. Female athletes in both sports had higher body fat percentages relative to the average range stated for female athletes. Male speed skaters had a significantly higher maximum oxygen in-take than that male cross-country skiers did. By contrast, this parameter did not differ significantly among female athletes. A negative correlation was observed between the fat free mass and muscle mass, and a positive correlation was observed among the body fat percentage, fat percentage, and fat mass. Both male and female athletes had protein intake ratios within the reference ranges. All athletes except male speed skaters had lipid energy ratios that were higher than the upper limit of the reference value. Both male and female athletes also reported carbohydrate energy ratios within the reference ranges, but had cereal energy ratios below the reference values. Athletes should pay attention to the ingestion of various nutrients to ensure a sufficient energy intake. Accordingly, adolescent athletes should consume daily meals containing a good balance of staple foods, main dishes, side dishes, milk and other dairy products, and fruits.展开更多
Accurate prediction of future surface wind speed(SWS)changes is the basis of scientific planning for wind turbines.Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model...Accurate prediction of future surface wind speed(SWS)changes is the basis of scientific planning for wind turbines.Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model ensemble(MME)of the 6th Coupled Model Intercomparison Project(CMIP6).However,the simulation capability for SWS varies greatly in CMIP6 multi-models,so the MME results still have large uncertainties.In this study,we used the reliability ensemble averaging(REA)method to assign each model different weights according to their performances in simulating historical SWS changes and project the SWS under different shared socioeconomic pathways(SSPs)in 2015-2099.The results indicate that REA considerably improves the SWS simulation capacity of CMIP6,eliminating the overestimation of SWS by the MME and increasing the simulation capacity of spatial distribution.The spatial correlations with observations increased from 0.56 for the MME to 0.85 for REA.Generally,REA could eliminate the overestimation of the SWS by 33%in 2015-2099.Except for southeastern China,the SWS generally decreases over China in the near term(2020-2049)and later term(2070-2099),particularly under high-emission scenarios.The SWS reduction projected by REA is twice as high as that by the MME in the near term,reaching-4%to-3%.REA predicts a larger area of increased SWS in the later term,which expands from southeastern China to eastern China.This study helps to reduce the projected SWS uncertainties.展开更多
文摘We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.
文摘Many factors affect the vehicular fuel consumption rate. The most significant traffic-related ones are speed, number of stops, speed noise, and acceleration noise (acceleration standard deviation). Fuel consumption models for both urban and highway traffic are used to evaluate the effect of these factors. Previous literature shows the speed and the acceleration of vehicles as well as the aerodynamic effects are the most commonly used variables in the highway fuel consumption mo dels. However, most existing models are based on the average or cruising speed and the effect of speed variation is by-and-large ignored. Incorporating the speed noise as a variable in the prediction models seems impractical because measuring it is cumbersome. However, knowing the relation between speed and speed noise may allow including the effect of speed noise in the model indirectly. To that end, this study examines the relation between speed and speed noise. The resulting mathematical relation is used to incorporate the speed noise effects in the fuel consumption model.
文摘There is considerable safety potential in ensuring that motorists respect the speed limits. High speeds increase the number and severity of accidents. Technological development over the last 20 years has enabled the development of systems that allow automatic speed control. The first generation of automatic speed control was point-based, but in recent years a potentially more effective alternative automatic speed control method has been introduced. This method is based upon records of drivers’ average travel speed over selected sections of the road and is normally called average speed control or section control. This article discusses the different methods for automatic speed control and presents an evaluation of the safety effects of average speed control, documented through changes in speed levels and accidents before and after the implementation of average speed control at selected sites in the UK. The study demonstrates that the introduction of average speed control results in statistically significant and substantial reductions both in speed and in number of accidents. The evaluation indicates that average speed control has a higher safety effect than point-based automatic speed control.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金The project is partly supported by the National Science Council, Contract Nos. NSC-89-261 l-E-019-024 (JZY), and NSC-89-2611-E-019-027 (CRC).
文摘Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.
文摘This study aimed to determine the appropriate nutritional intakes and dietary habits of high school-aged cross-country skiers and speed skaters. The subjects, all high school students from N Prefecture, included 18 male cross-country skiers, 5 male speed skaters, 10 female cross-country ski players and 4 female speed skaters. Physical measurements, food intake frequency survey results, bone mineral density and exercise stress test outcomes, and lactic acid measurements were evaluated. Female athletes in both sports had higher body fat percentages relative to the average range stated for female athletes. Male speed skaters had a significantly higher maximum oxygen in-take than that male cross-country skiers did. By contrast, this parameter did not differ significantly among female athletes. A negative correlation was observed between the fat free mass and muscle mass, and a positive correlation was observed among the body fat percentage, fat percentage, and fat mass. Both male and female athletes had protein intake ratios within the reference ranges. All athletes except male speed skaters had lipid energy ratios that were higher than the upper limit of the reference value. Both male and female athletes also reported carbohydrate energy ratios within the reference ranges, but had cereal energy ratios below the reference values. Athletes should pay attention to the ingestion of various nutrients to ensure a sufficient energy intake. Accordingly, adolescent athletes should consume daily meals containing a good balance of staple foods, main dishes, side dishes, milk and other dairy products, and fruits.
基金This work was funded by the National Natural Science Foundation of China(42305025).
文摘Accurate prediction of future surface wind speed(SWS)changes is the basis of scientific planning for wind turbines.Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model ensemble(MME)of the 6th Coupled Model Intercomparison Project(CMIP6).However,the simulation capability for SWS varies greatly in CMIP6 multi-models,so the MME results still have large uncertainties.In this study,we used the reliability ensemble averaging(REA)method to assign each model different weights according to their performances in simulating historical SWS changes and project the SWS under different shared socioeconomic pathways(SSPs)in 2015-2099.The results indicate that REA considerably improves the SWS simulation capacity of CMIP6,eliminating the overestimation of SWS by the MME and increasing the simulation capacity of spatial distribution.The spatial correlations with observations increased from 0.56 for the MME to 0.85 for REA.Generally,REA could eliminate the overestimation of the SWS by 33%in 2015-2099.Except for southeastern China,the SWS generally decreases over China in the near term(2020-2049)and later term(2070-2099),particularly under high-emission scenarios.The SWS reduction projected by REA is twice as high as that by the MME in the near term,reaching-4%to-3%.REA predicts a larger area of increased SWS in the later term,which expands from southeastern China to eastern China.This study helps to reduce the projected SWS uncertainties.