This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms...This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.展开更多
In the east coast Peninsular Malaysia region,sediments are transported by several rivers from the east Malaysia into the South China Sea estuary.In the vicinity of the five river estuaries core sediments were collecte...In the east coast Peninsular Malaysia region,sediments are transported by several rivers from the east Malaysia into the South China Sea estuary.In the vicinity of the five river estuaries core sediments were collected in order to investigate rare earth elements(REEs) profile.Core sediments were divided into strata of between 2 to 4 cm intervals and prepared for analyzing by ICP-AES.REE concentrations of 54.3 μg/gr at 24–26 cm in EC4 increased to 114.1 μg/gr at 20–22 cm in EC5.The measured concentration of ...展开更多
Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven differe...Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data. Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and" the depth-averaged suspended sediment concentration. On this basis, the quantitative application integrated model on remote sensing of suspended sediment is developed. By using this model as well as multi-temporal remote sensing images, multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted. The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less, which can satisfy the engineering requirements of channel deposition calculation.展开更多
[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]F...[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.展开更多
To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morph...To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morphological adjustment of the river,and(ii)establish a corresponding simulation for non-equilibrium conditions.Based on discharge and suspended sediment concentration(SSC)as well as 82 cross-sectional data items for the Huayuankou-Lijin reach of the Lower Yellow River in the period 1965-2015,the process of adjustment of the geometry of the main channel(area,width,depth,and geomorphic coefficient),and its responses to changes in discharge and SSC for different reaches are statistically analyzed.Following this,a delayed response model(DRM)of the geometry of the main channel subjected to variations in discharge and SSC is established using a multi-step analytical model,with the discharge and SSC as the main controlling factors.The results show that the area,width,and depth of the main channel decreased initially,then increased,decreased again,and finally increased again.These features of the geometry of the channel were positively correlated with the 4-year moving average discharge and negatively with the 4-year moving average SSC.The geomorphic coefficient for the Huayuankou-Sunkou reach exhibited a trend of decrease,whereas that of the Sunkou-Lijin reach decreased initially,then increased,decreased again,and finally increased again.Except for the Huayuankou-Gaocun reach in 1965-1999,the coefficient was negatively correlated with the 4-year moving average discharge and positively with SSC.The simulated values of the morphological parameters of the main channel for all sub-reaches obtained using the DRM agreed well with the measured values.This indicates that the DRM can be used to simulate the process of response of the cross-sectional geometry of the main channel to variations in the water and sediment.The results of the model show that the adjustment of the geometry of the main channel was affected by the discharge and the SSC at present(30%)as well as for the previous 7 years(70%).The proposed model offers insights into the mechanism whereby past water and sediment influence the current morphological adjustment of the river,and provides an effective method for predicting the magnitude and trend of the geometry of the main channel under different flow conditions.展开更多
Average life of oxygen vacancies of quartz in sediments is estimated by using the ESR (electron spin resonance) signals of E( centers from the thermal activation technique. The experimental results show that the secon...Average life of oxygen vacancies of quartz in sediments is estimated by using the ESR (electron spin resonance) signals of E( centers from the thermal activation technique. The experimental results show that the second-order kinetics equation is more applicable to the life estimation compared with the first order equation. The average life of oxygen vacancies of quartz from 4895 to 4908 deep sediments in the Tarim Basin is about 1018 a at 27℃.展开更多
Long-chain n-alkanes are one of the most common organic compounds in terrestrial plants and they are well-preserved in various geological archives.n-alkanes are relatively resistant to degradation and thus they can pr...Long-chain n-alkanes are one of the most common organic compounds in terrestrial plants and they are well-preserved in various geological archives.n-alkanes are relatively resistant to degradation and thus they can provide high-fidelity records of past vegetation and climate changes.Nevertheless,previous studies have shown that the interpretation of n-alkane proxies,such as the average chain length(ACL),is often ambiguous since this proxy depends on more than one variable.Both vegetation and climate could exert controls on the n-alkane ACL,and hence its interpretation requires careful consideration,especially in regions like the Qinghai-Tibet Plateau(QTP)where topography,biome type and moisture source are highly variable.To further evaluate the influences of vegetation and climate on the ACL in high-elevation lakes,we examined the n-alkane distributions of the surface sediments of 55 lakes across the QTP.Our results show that the ACL across a climatic gradient is significantly affected by precipitation,rather than by temperature.The positive correlation between ACL and precipitation may be because of the effect of microbial degradation during deposition.Finally,we suggest that more caution is needed in the interpretation of ACL data in different regions.展开更多
文摘This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.
文摘In the east coast Peninsular Malaysia region,sediments are transported by several rivers from the east Malaysia into the South China Sea estuary.In the vicinity of the five river estuaries core sediments were collected in order to investigate rare earth elements(REEs) profile.Core sediments were divided into strata of between 2 to 4 cm intervals and prepared for analyzing by ICP-AES.REE concentrations of 54.3 μg/gr at 24–26 cm in EC4 increased to 114.1 μg/gr at 20–22 cm in EC5.The measured concentration of ...
基金supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009491711)
文摘Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data. Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and" the depth-averaged suspended sediment concentration. On this basis, the quantitative application integrated model on remote sensing of suspended sediment is developed. By using this model as well as multi-temporal remote sensing images, multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted. The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less, which can satisfy the engineering requirements of channel deposition calculation.
基金Supported by National Key R&D Plan Topics (2016YFC0503705)Major Project of High-resolution Earth Observation System (08 Y30B07 900113/15)Dynamic Monitoring Project of National Water and Soil Loss and Optimization Layout Project of National Water and Soil Conservation Monitoring Point (126216229000200002)。
文摘[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.
基金Key Program of National Natural Science Foundation of China,No.51639005Central Public-interest Scientific Institution Basal Research Fund of China,No.CKSF2019214/HL,No.CKSF2019411/HL。
文摘To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morphological adjustment of the river,and(ii)establish a corresponding simulation for non-equilibrium conditions.Based on discharge and suspended sediment concentration(SSC)as well as 82 cross-sectional data items for the Huayuankou-Lijin reach of the Lower Yellow River in the period 1965-2015,the process of adjustment of the geometry of the main channel(area,width,depth,and geomorphic coefficient),and its responses to changes in discharge and SSC for different reaches are statistically analyzed.Following this,a delayed response model(DRM)of the geometry of the main channel subjected to variations in discharge and SSC is established using a multi-step analytical model,with the discharge and SSC as the main controlling factors.The results show that the area,width,and depth of the main channel decreased initially,then increased,decreased again,and finally increased again.These features of the geometry of the channel were positively correlated with the 4-year moving average discharge and negatively with the 4-year moving average SSC.The geomorphic coefficient for the Huayuankou-Sunkou reach exhibited a trend of decrease,whereas that of the Sunkou-Lijin reach decreased initially,then increased,decreased again,and finally increased again.Except for the Huayuankou-Gaocun reach in 1965-1999,the coefficient was negatively correlated with the 4-year moving average discharge and positively with SSC.The simulated values of the morphological parameters of the main channel for all sub-reaches obtained using the DRM agreed well with the measured values.This indicates that the DRM can be used to simulate the process of response of the cross-sectional geometry of the main channel to variations in the water and sediment.The results of the model show that the adjustment of the geometry of the main channel was affected by the discharge and the SSC at present(30%)as well as for the previous 7 years(70%).The proposed model offers insights into the mechanism whereby past water and sediment influence the current morphological adjustment of the river,and provides an effective method for predicting the magnitude and trend of the geometry of the main channel under different flow conditions.
基金the National Natural Science Foundation of China (Grant No. 49876014) the Scientific and Technologic Development Foundation for Geology (Grant No. 959602).
文摘Average life of oxygen vacancies of quartz in sediments is estimated by using the ESR (electron spin resonance) signals of E( centers from the thermal activation technique. The experimental results show that the second-order kinetics equation is more applicable to the life estimation compared with the first order equation. The average life of oxygen vacancies of quartz from 4895 to 4908 deep sediments in the Tarim Basin is about 1018 a at 27℃.
基金financially supported by the National Natural Science Foundation of China(Grant No.42171159)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0601).
文摘Long-chain n-alkanes are one of the most common organic compounds in terrestrial plants and they are well-preserved in various geological archives.n-alkanes are relatively resistant to degradation and thus they can provide high-fidelity records of past vegetation and climate changes.Nevertheless,previous studies have shown that the interpretation of n-alkane proxies,such as the average chain length(ACL),is often ambiguous since this proxy depends on more than one variable.Both vegetation and climate could exert controls on the n-alkane ACL,and hence its interpretation requires careful consideration,especially in regions like the Qinghai-Tibet Plateau(QTP)where topography,biome type and moisture source are highly variable.To further evaluate the influences of vegetation and climate on the ACL in high-elevation lakes,we examined the n-alkane distributions of the surface sediments of 55 lakes across the QTP.Our results show that the ACL across a climatic gradient is significantly affected by precipitation,rather than by temperature.The positive correlation between ACL and precipitation may be because of the effect of microbial degradation during deposition.Finally,we suggest that more caution is needed in the interpretation of ACL data in different regions.