Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile ...In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.展开更多
An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation functi...An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.展开更多
This paper proposes a relay selection scheme based on geometric optimum principle to maximize the cognitive link' s connectivity with limited interference to primary user in cooperative cognitive systems. A dual-hop ...This paper proposes a relay selection scheme based on geometric optimum principle to maximize the cognitive link' s connectivity with limited interference to primary user in cooperative cognitive systems. A dual-hop cognitive relay system is considered, in which the channel impulse response follows independent non-identical distribution (i. n. d. ) each hop, such as Rician, Rayleigh and Nakagami-m distribution. Then, closed-form expressions in terms of outage probability and average bit error rate (ABER) are obtained using amplify-and-forward (AF) relaying protocol over such mixed fading channels. Furthermore, the best range of the relay is derived. Extensive simulation re- suits are conducted to verify the theoretical analysis, which is useful to the network optimal design.展开更多
In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived b...In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived based on two different scenarios of channel state information (CSI). For perfect CSI, the maximum-ratio-transmission and combining (MRT-MRC) technique is applied to design the beamforming and combining vectors. Without perfect CSI, the transmission scheme with limited feedback is designed, and the analytical results are verified through two kinds of codebooks, i.e., random vector quantization and Grassmann. The simulation results show that, the proposed transmission schemes for the two-way relay system can outperform other transmission schemes in the performance of outage probability and ASER, and the accuracy of the derived closed-form expressions is also verified by the numerical simulations.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
基金in part by the National Natural Science Foundation of China under Grant 61771291,Grant 61671278in part by the Key Research and Development Project of Shandong Province under Grant 2018GGX101009,Grant 2019TSLH0202,Grant 2020CXGC010109+1 种基金in part by the National Nature Science Foundation of China for Excellent Young Scholars under Grant 61622111in part by the Project of International Cooperation and Exchanges NSFC under Grant 61860206005.
文摘In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.
基金supported by Important National Science & Technology Specific Projects under Grant No.CX01011the Important National Science & Technology Specific Projects under Grant No.4101002+2 种基金the National Natural Science Foundation of China under Grants No.61002014,No.60972017,No.60972018the Excellent Young Teachers Program of MOE,PRC under Grant No.2009110120028the Research Fund for the Doctoral Program of Higher Education under Grants No.20091101110019,No.20070007019
文摘An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.
基金Supported by the National Natural Science Foundation of China(No.61271184)New Century Excellent Talents in University(NCET-110594)Fundamental Research Funds for the Central Universities(No.2013RC1001)
文摘This paper proposes a relay selection scheme based on geometric optimum principle to maximize the cognitive link' s connectivity with limited interference to primary user in cooperative cognitive systems. A dual-hop cognitive relay system is considered, in which the channel impulse response follows independent non-identical distribution (i. n. d. ) each hop, such as Rician, Rayleigh and Nakagami-m distribution. Then, closed-form expressions in terms of outage probability and average bit error rate (ABER) are obtained using amplify-and-forward (AF) relaying protocol over such mixed fading channels. Furthermore, the best range of the relay is derived. Extensive simulation re- suits are conducted to verify the theoretical analysis, which is useful to the network optimal design.
基金Supported by the National Basic Research Program of China (Grant No. 2007CB310603)the National Natural Science Foundation of China(Grant Nos. 60672093, 60496310, 60702029, 60902012)+1 种基金the National High-Tech Research & Development Program of China (Grant No.2007AA01Z262)the Natural Science Foundation of Jiangsu Province (Grant No. BK2005061)
文摘In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived based on two different scenarios of channel state information (CSI). For perfect CSI, the maximum-ratio-transmission and combining (MRT-MRC) technique is applied to design the beamforming and combining vectors. Without perfect CSI, the transmission scheme with limited feedback is designed, and the analytical results are verified through two kinds of codebooks, i.e., random vector quantization and Grassmann. The simulation results show that, the proposed transmission schemes for the two-way relay system can outperform other transmission schemes in the performance of outage probability and ASER, and the accuracy of the derived closed-form expressions is also verified by the numerical simulations.