In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators se...In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.展开更多
In this paper, we discuss the average errors of multivariate Lagrange interpolation based on the Chebyshev nodes of the first kind. The average errors of the interpolation sequence are determined on the multivariate W...In this paper, we discuss the average errors of multivariate Lagrange interpolation based on the Chebyshev nodes of the first kind. The average errors of the interpolation sequence are determined on the multivariate Wiener space.展开更多
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte...This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.展开更多
By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using ...By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.展开更多
The order of computational complexity of all bounded linear functional ap proximation problem is determined for the generalized Sobolev class Wp?(Id), Nikolskii class H|∞k(Id) in the worst (deterministic), stoc...The order of computational complexity of all bounded linear functional ap proximation problem is determined for the generalized Sobolev class Wp?(Id), Nikolskii class H|∞k(Id) in the worst (deterministic), stochastic and average case setting, from which it is concluded that the bounded linear functional approximation problem for the classes Wp?(Id) and H∞k(Id) is intractable in worst case setting, but is tractable with respect to stochastic and average case setting.展开更多
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary co...In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.展开更多
Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, ...Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.展开更多
Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected ...Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
For weighted approximation in Lp-norm,we determine strongly asymptotic orders for the average errors of both function approximation and derivative approximation by the Bernstein operators sequence on the r-fold integr...For weighted approximation in Lp-norm,we determine strongly asymptotic orders for the average errors of both function approximation and derivative approximation by the Bernstein operators sequence on the r-fold integrated Wiener space.展开更多
Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) t...Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.展开更多
In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modula...In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.展开更多
By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failu...By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.展开更多
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
The eddy current displacement sensor's averaging effect has been investigated in this paper, and the frequency spectrum property of the averaging effect was also deduced. It indicates that the averaging effect has no...The eddy current displacement sensor's averaging effect has been investigated in this paper, and the frequency spectrum property of the averaging effect was also deduced. It indicates that the averaging effect has no influences on measuring a rotor's rotating error, but it has visible influences on measuring the rotor's profile error. According to the frequency spectrum of the averaging effect, the actual sampling data can be adjusted reasonably, thus measuring precision is improved.展开更多
文摘In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.
文摘In this paper, we discuss the average errors of multivariate Lagrange interpolation based on the Chebyshev nodes of the first kind. The average errors of the interpolation sequence are determined on the multivariate Wiener space.
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)
文摘This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.
基金Supported by National Science and Technology Major Project of China(Grant No.2015ZX04005001)Tianjin Provincial Nature Science Foundation of China(Grant No.16JCZDJC38400)
文摘By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.
基金Project supported by the Natural Science Foundation of China(10371009) and Research Fund for the Doctoral Program Higher Education.
文摘The order of computational complexity of all bounded linear functional ap proximation problem is determined for the generalized Sobolev class Wp?(Id), Nikolskii class H|∞k(Id) in the worst (deterministic), stochastic and average case setting, from which it is concluded that the bounded linear functional approximation problem for the classes Wp?(Id) and H∞k(Id) is intractable in worst case setting, but is tractable with respect to stochastic and average case setting.
文摘In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.
文摘Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.
文摘Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
文摘For weighted approximation in Lp-norm,we determine strongly asymptotic orders for the average errors of both function approximation and derivative approximation by the Bernstein operators sequence on the r-fold integrated Wiener space.
基金supported by National Natural Science Foundation of China(Grant Nos.5112502251005173)+1 种基金PhD Programs Foundation of Ministry of Education of China(Grant No.20110201110025)the Fundamental Research Funds for the Central Universities of China
文摘Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
基金supported in part by the National Key Research and Development Program of China under Grant 2019YFB1803400in part by the National Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111.
文摘In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.
基金The National Natural Science Foundation of China(No.61502422)the Natural Science Foundation of Zhejiang Province(No.LY18F020028,LQ15F020006)the Natural Science Foundation of Zhejiang University of Technology(No.2014XY007)
文摘By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
文摘The eddy current displacement sensor's averaging effect has been investigated in this paper, and the frequency spectrum property of the averaging effect was also deduced. It indicates that the averaging effect has no influences on measuring a rotor's rotating error, but it has visible influences on measuring the rotor's profile error. According to the frequency spectrum of the averaging effect, the actual sampling data can be adjusted reasonably, thus measuring precision is improved.