This paper presents a new combined AC/DC-coupled output averaging technique for input amplifier design of flash analog-to-digital converters (ADC). The new offset averaging design technique takes full advantage of t...This paper presents a new combined AC/DC-coupled output averaging technique for input amplifier design of flash analog-to-digital converters (ADC). The new offset averaging design technique takes full advantage of traditional DC-coupled resistance averaging and AC-coupled capacitance averaging techniques to minimize offset-induced ADC nonlinearities. Circuit analysis allows selection of optimum resistance and capacitance averaging factors to achieve maximum offset reduction in ADC designs. The new averaging method is verified in designing a 4 bit 1 Gs/s flash ADC that is implemented in foundry 0.13 μm CMOS technology.展开更多
A single channel 2-GS/s 6-bit ADC with cascade resistive averaging and self foreground calibration is demonstrated in 0.18-μm CMOS.The calibration method based on DAC trimming improves the linearity and dynamic perfo...A single channel 2-GS/s 6-bit ADC with cascade resistive averaging and self foreground calibration is demonstrated in 0.18-μm CMOS.The calibration method based on DAC trimming improves the linearity and dynamic performance further.The peak DNL and INL are measured as 0.34 and 0.22 LSB,respectively.The SNDR and SFDR have achieved 36.5 and 45.9 dB,respectively,with 1.22 MHz input signal and 2 GS/s.The proposed ADC,including on-chip track-and-hold amplifiers and clock buffers,consumes 570 mW from a single 1.8 V supply while operating at 2 GS/s.展开更多
文摘This paper presents a new combined AC/DC-coupled output averaging technique for input amplifier design of flash analog-to-digital converters (ADC). The new offset averaging design technique takes full advantage of traditional DC-coupled resistance averaging and AC-coupled capacitance averaging techniques to minimize offset-induced ADC nonlinearities. Circuit analysis allows selection of optimum resistance and capacitance averaging factors to achieve maximum offset reduction in ADC designs. The new averaging method is verified in designing a 4 bit 1 Gs/s flash ADC that is implemented in foundry 0.13 μm CMOS technology.
文摘A single channel 2-GS/s 6-bit ADC with cascade resistive averaging and self foreground calibration is demonstrated in 0.18-μm CMOS.The calibration method based on DAC trimming improves the linearity and dynamic performance further.The peak DNL and INL are measured as 0.34 and 0.22 LSB,respectively.The SNDR and SFDR have achieved 36.5 and 45.9 dB,respectively,with 1.22 MHz input signal and 2 GS/s.The proposed ADC,including on-chip track-and-hold amplifiers and clock buffers,consumes 570 mW from a single 1.8 V supply while operating at 2 GS/s.