High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs...High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.展开更多
This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Gen...This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.展开更多
A multicellular DCX (dc-dc transformer) using unregulated cell converters has been proposed for the environmentally friendly data centers. The high speed cell converter with the switching frequency over MHz behaves ...A multicellular DCX (dc-dc transformer) using unregulated cell converters has been proposed for the environmentally friendly data centers. The high speed cell converter with the switching frequency over MHz behaves as an ideal transformer, and this behavior solves the voltage imbalance issue in the multicellular converter topology. The analysis of the unregulated cell converter is conducted by using the state space averaging method, and the operation condition for the ideal transformer is specified. The behavior of the multicellular DCX using the high speed cell converters has been also analyzed, and the voltage imbalance issue among cell converters is discussed quantitatively. A prototype of a 19.2 kW 384 V-384 V multicellular DCX using sixty-four unregulated cell converters is fabricated and the validity of the analyses is verified.展开更多
基金financially supported by the National Science and Technology Major Project(No.2016ZX05034004)。
文摘High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.
文摘This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.
文摘A multicellular DCX (dc-dc transformer) using unregulated cell converters has been proposed for the environmentally friendly data centers. The high speed cell converter with the switching frequency over MHz behaves as an ideal transformer, and this behavior solves the voltage imbalance issue in the multicellular converter topology. The analysis of the unregulated cell converter is conducted by using the state space averaging method, and the operation condition for the ideal transformer is specified. The behavior of the multicellular DCX using the high speed cell converters has been also analyzed, and the voltage imbalance issue among cell converters is discussed quantitatively. A prototype of a 19.2 kW 384 V-384 V multicellular DCX using sixty-four unregulated cell converters is fabricated and the validity of the analyses is verified.