In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average varianc...In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.展开更多
This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering t...This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the popu- lation density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.展开更多
Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adul...Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adults published up to October 2012 was performed, each study were reviewed, and data were abstracted. The studies were first evaluated for heterogeneity. The average protein requirements were analyzed by using the individual data of each included studies. Study site climate, age, sex, and dietary protein source were compared. Results Data for 348 subjects were gathered from 28 nitrogen balance studies. The natural logarithm of requirement for 348 individuals had a normal distribution with a mean of 4.66. The estimated average requirement was the exponentiation of the mean of the log requirement, 105.64 mg N/kg·d. No significant differences between adult age, source of dietary protein were observed. But there was significant difference between sex and the climate of the study site (P〈0.05). Conclusion The estimated average requirement and recommended nutrient intake of the healthy adult population was 105.64 mg N/kg·d (0.66 g high quality protein/kg·d) and 132.05 mg N/kg·d (0.83 g high quality protein/kg·d), respectively.展开更多
Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, ...Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.展开更多
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to sele...In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to select the best estimate from the WVE and to estimate the structure dimension. And this selected best estimate usually performs better than the existing methods such as Sliced Inverse Regression (SIR), SAVE, etc. Many methods such as SIR, SAVE, etc. usually put the same weight on each observation to estimate central subspace (CS). By introducing a weight function, WVE puts different weights on different observations according to distance of observations from CS. The weight function makes WVE have very good performance in general and complicated situations, for example, the distribution of regressor deviating severely from elliptical distribution which is the base of many methods, such as SIR, etc. And compared with many existing methods, WVE is insensitive to the distribution of the regressor. The consistency of the WVE is established. Simulations to compare the performances of WVE with other existing methods confirm the advantage of WVE.展开更多
Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under inde...Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.展开更多
Tensor data have been widely used in many fields,e.g.,modern biomedical imaging,chemometrics,and economics,but often suffer from some common issues as in high dimensional statistics.How to find their low-dimensional l...Tensor data have been widely used in many fields,e.g.,modern biomedical imaging,chemometrics,and economics,but often suffer from some common issues as in high dimensional statistics.How to find their low-dimensional latent structure has been of great interest for statisticians.To this end,we develop two efficient tensor sufficient dimension reduction methods based on the sliced average variance estimation(SAVE)to estimate the corresponding dimension reduction subspaces.The first one,entitled tensor sliced average variance estimation(TSAVE),works well when the response is discrete or takes finite values,but is not■consistent for continuous response;the second one,named bias-correction tensor sliced average variance estimation(CTSAVE),is a de-biased version of the TSAVE method.The asymptotic properties of both methods are derived under mild conditions.Simulations and real data examples are also provided to show the superiority of the efficiency of the developed methods.展开更多
文摘In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.
基金funded by the National Natural Science Foundation of China (Nos.71271069,71540015,71532004)Foundation of Beijing University of Civil Engineering and Architecture (No.ZF15069)
文摘This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the popu- lation density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.
基金supported by the National Natural Science Foundation of China(No.81001247)
文摘Objective The goal of this study was to analyze protein requirements in healthy adults through a meta-analysis of nitrogen balance studies. Methods A comprehensive search for nitrogen balance studies of healthy adults published up to October 2012 was performed, each study were reviewed, and data were abstracted. The studies were first evaluated for heterogeneity. The average protein requirements were analyzed by using the individual data of each included studies. Study site climate, age, sex, and dietary protein source were compared. Results Data for 348 subjects were gathered from 28 nitrogen balance studies. The natural logarithm of requirement for 348 individuals had a normal distribution with a mean of 4.66. The estimated average requirement was the exponentiation of the mean of the log requirement, 105.64 mg N/kg·d. No significant differences between adult age, source of dietary protein were observed. But there was significant difference between sex and the climate of the study site (P〈0.05). Conclusion The estimated average requirement and recommended nutrient intake of the healthy adult population was 105.64 mg N/kg·d (0.66 g high quality protein/kg·d) and 132.05 mg N/kg·d (0.83 g high quality protein/kg·d), respectively.
文摘Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
基金supported by National Natural Science Foundation of China (Grant No. 10771015)
文摘In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to select the best estimate from the WVE and to estimate the structure dimension. And this selected best estimate usually performs better than the existing methods such as Sliced Inverse Regression (SIR), SAVE, etc. Many methods such as SIR, SAVE, etc. usually put the same weight on each observation to estimate central subspace (CS). By introducing a weight function, WVE puts different weights on different observations according to distance of observations from CS. The weight function makes WVE have very good performance in general and complicated situations, for example, the distribution of regressor deviating severely from elliptical distribution which is the base of many methods, such as SIR, etc. And compared with many existing methods, WVE is insensitive to the distribution of the regressor. The consistency of the WVE is established. Simulations to compare the performances of WVE with other existing methods confirm the advantage of WVE.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971421,71925007,72091212,and 12288201Yunling Scholar Research Fund of Yunnan Province under Grant No.YNWR-YLXZ-2018-020+1 种基金the CAS Project for Young Scientists in Basic Research under Grant No.YSBR-008the Start-Up Grant from Kunming University of Science and Technology under Grant No.KKZ3202207024.
文摘Prediction plays an important role in data analysis.Model averaging method generally provides better prediction than using any of its components.Even though model averaging has been extensively investigated under independent errors,few authors have considered model averaging for semiparametric models with correlated errors.In this paper,the authors offer an optimal model averaging method to improve the prediction in partially linear model for longitudinal data.The model averaging weights are obtained by minimizing criterion,which is an unbiased estimator of the expected in-sample squared error loss plus a constant.Asymptotic properties,including asymptotic optimality and consistency of averaging weights,are established under two scenarios:(i)All candidate models are misspecified;(ii)Correct models are available in the candidate set.Simulation studies and an empirical example show that the promise of the proposed procedure over other competitive methods.
基金supported by the National Natural Science Foundation of China(Grant NO.12301377,11971208,92358303)the National Social Science Foundation of China(Grant NO.21&ZD152)+4 种基金the Outstanding Youth Fund Project of the Science and Technology Department of Jiangxi Province(Grant No.20224ACB211003)Jiangxi Provincial National Natural Science Foundation(Grant NO.20232BAB211014)the Science and technology research project of the Education Department of Jiangxi Province(Grant No.GJJ210535)the opening funding of Key Laboratory of Data Science in Finance and Economicsthe innovation team funding of Digital Economy and Industrial Development,Jiangxi University of Finance and Economics。
文摘Tensor data have been widely used in many fields,e.g.,modern biomedical imaging,chemometrics,and economics,but often suffer from some common issues as in high dimensional statistics.How to find their low-dimensional latent structure has been of great interest for statisticians.To this end,we develop two efficient tensor sufficient dimension reduction methods based on the sliced average variance estimation(SAVE)to estimate the corresponding dimension reduction subspaces.The first one,entitled tensor sliced average variance estimation(TSAVE),works well when the response is discrete or takes finite values,but is not■consistent for continuous response;the second one,named bias-correction tensor sliced average variance estimation(CTSAVE),is a de-biased version of the TSAVE method.The asymptotic properties of both methods are derived under mild conditions.Simulations and real data examples are also provided to show the superiority of the efficiency of the developed methods.