The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a...The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.展开更多
This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 4...This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.展开更多
A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretic...A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity.At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5.展开更多
基金Supported by the Fund from the Air Force Armament Department of China for Innovative Research Group(Grant KJ2012283)
文摘The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.
文摘This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
基金co-supported by the National Natural Science Foundation of China (No. 51505338 and No. 51475332)the Youths Science Foundation of Zhejiang (No. LQ16E050004 and No. LQ17E050003)
文摘A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity.At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5.