A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden an...A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.展开更多
In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacle...In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.展开更多
基金National Natural Science Foundations of China(Nos.71471135,61273035)
文摘A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.
基金Supported by Ministeral Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.