Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of...In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.展开更多
The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral st...The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. T...A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.展开更多
This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more importa...This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more important and interesting aspects of the research,judged from a personal viewpoint,are discussed.They can be crudely classified into four categories:(1) shells subjected to non-uniform loads;(2) shells on discrete supports;(3) shells with intended cutouts/holes;and (4) shells with non-uniform settlements.展开更多
Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important ...Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.展开更多
The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferentia...Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.展开更多
An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were conside...An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing ...To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.展开更多
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular...Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.展开更多
Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behavio...Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.展开更多
To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of struc...To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.展开更多
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through...Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.展开更多
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mai...The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.展开更多
Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel...Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.展开更多
The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strengt...The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.展开更多
[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of...[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.展开更多
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping City(N2021Z007)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202119).
文摘In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.
基金Funded by the National Natural Science Foundation of China(No.50309004)
文摘The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Financial support from the National Hi-tech Research and Development Program of China is much appreciated
文摘A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.
文摘This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more important and interesting aspects of the research,judged from a personal viewpoint,are discussed.They can be crudely classified into four categories:(1) shells subjected to non-uniform loads;(2) shells on discrete supports;(3) shells with intended cutouts/holes;and (4) shells with non-uniform settlements.
文摘Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.
基金Project supported by the National Natural Science Foudation of China (No. 50874095)The Na-tional Basic Research Program of China (973 Program)
文摘Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.
文摘An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
基金supported by the National Key R&D Program of China(No.2017YFC0405103)the Natural Science Foundation of China(No. 51978166)the Construction System Science and Technology Guidance Project of Jiangsu(Nos.2017ZD131,2017ZD132).
文摘To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515010095and 2023A1515010080)the Science and Technology Program of Guangzhou (Grant No. 202201010126)the Young Science and Technology Talent Support Project of Guangzhou Association for Science and Technology (Grant No. X20210201066)。
文摘Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.
文摘Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50708027)National Key Technology R&D Program of China(Grant No.2006BAJ01B02)
文摘To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.
基金Project(11102163)supported by the National Natural Science Foundation of ChinaProjects(JC20110218,JC20110260)supported by Foundation for Fundamental Research of Northwestern Polytechnical University,China
文摘Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
基金The authors would like to thank NSFC for support toenable the performing of this research (No. 59775055).
文摘The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.
文摘Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.
文摘The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.
基金Supported by the Special Fund for Crop Breeding of Sichuan Provincial Department of Education,China (2006LD006)the Rapeseed Breeding Research Program of Science & Technology Department of Sichuan Province,China (2006YZGG-5-5)~~
文摘[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.